Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Die Ableitung der Funktion \( f(x) = 2x^3 - 2x^2 + 4x - 1 \) kann durch Anwendung der Potenzregel und der Konstantenregel berechnet werden. Die Potenzregel besagt, dass die Ableitung von \( x^n \) gleich \( n \cdot x^{n-1} \) ist. Hier ist die Schritt-für-Schritt-Ableitung: 1. Ableitung von \( 2x^3 \): \[ \frac{d}{dx}(2x^3) = 2 \cdot 3x^{3-1} = 6x^2 \] 2. Ableitung von \( -2x^2 \): \[ \frac{d}{dx}(-2x^2) = -2 \cdot 2x^{2-1} = -4x \] 3. Ableitung von \( 4x \): \[ \frac{d}{dx}(4x) = 4 \] 4. Ableitung der Konstante \( -1 \): \[ \frac{d}{dx}(-1) = 0 \] Nun die einzelnen Ableitungen zusammenfügen: \[ f'(x) = 6x^2 - 4x + 4 \] Die Ableitung der Funktion \( f(x) = 2x^3 - 2x^2 + 4x - 1 \) ist also: \[ f'(x) = 6x^2 - 4x + 4 \]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]
Das Winkeldritteln mit Zirkel und Lineal ist im Allgemeinen **nicht** mit endlich vielen Schritten möglich. Das ist ein klassisches Problem der antiken Geometrie, das 1837 von Pierre Wantzel bewi... [mehr]
Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]
Drei plus vier ergibt sieben.
Eine Differentialgleichung ist eine mathematische Gleichung, in der eine unbekannte Funktion und ihre Ableitungen vorkommen. Sie beschreibt, wie sich eine Größe (z. B. Temperatur, Geschwind... [mehr]
Zuerst wird der Ausdruck mit Klammern berechnet: 28 – (15 + 9) = 28 – 24 = 4Wenn du die Klammern weässt, bleibt der Ausdruck so stehen: 28 – 15 + 9 Nun rechnest du das oh... [mehr]