Um 5250 durch 3500 zu teilen, kannst du den Bruch vereinfachen. 1. Schreibe den Bruch: \( \frac{5250}{3500} \). 2. Teile sowohl den Zähler als auch den Nenner durch 3500: \( \frac{5250 \di... [mehr]
Um die Brüche \( \frac{2}{7} \) und \( \frac{5}{14} \) auf den gleichen Nenner zu bringen, musst du den kleinsten gemeinsamen Nenner (kgV) finden. 1. Der Nenner von \( \frac{2}{7} \) ist 7. 2. Der Nenner von \( \frac{5}{14} \) ist 14. Der kleinste gemeinsame Nenner von 7 und 14 ist 14. Jetzt bringst du die Brüche auf diesen Nenner: - \( \frac{2}{7} \) wird umgewandelt: \[ \frac{2}{7} = \frac{2 \times 2}{7 \times 2} = \frac{4}{14} \] - \( \frac{5}{14} \) bleibt gleich, da der Nenner bereits 14 ist. Die beiden Brüche auf den gleichen Nenner sind also \( \frac{4}{14} \) und \( \frac{5}{14} \).
Um 5250 durch 3500 zu teilen, kannst du den Bruch vereinfachen. 1. Schreibe den Bruch: \( \frac{5250}{3500} \). 2. Teile sowohl den Zähler als auch den Nenner durch 3500: \( \frac{5250 \di... [mehr]
Der gemeinsame Nenner von 445 und 1000 ist das kleinste gemeinsame Vielfache (kgV) dieser beiden Zahlen. Um das kgV zu finden, zerlegen wir beide Zahlen in ihre Primfaktoren: - 445 = 5 × 89 - 1... [mehr]
3/6 kann vereinfacht werden zu 1/2.
Um 19 Prozent zu 2700 zu addieren, berechnest du zuerst 19 % von 2700: 19 % von 2700 = 0,19 × 2700 = 513 Dann addierst du diesen Wert zu 2700: 2700 + 513 = 3213 Das Ergebnis ist **3213**.
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
1/2 mal fünf ergibt 2,5.
0,5 als Bruch kann als 1/2 dargestellt werden.
1/4 + 2/4 ergibt 3/4.
Um die Brüche zu subtrahieren, bringe sie auf einen gemeinsamen Nenner. In diesem Fall ist der Nenner bereits gleich (14): \[ \frac{9}{14} - \frac{2}{14} = \frac{9 - 2}{14} = \frac{7}{14} \] Je... [mehr]
Um die Rechnung \( \frac{5}{7} + 6 + 7 \) durchzuführen, addiere zuerst die ganzen Zahlen: \( 6 + 7 = 13 \). Dann addiere \( \frac{5}{7} \) zu \( 13 \): \( 13 + \frac{5}{7} = \frac{13 \cdot 7}... [mehr]