0,5 als Bruch kann als 1/2 dargestellt werden.
Eine rationale Zahl ist eine Zahl, die als Bruch dargestellt werden kann, wobei der Zähler eine ganze Zahl und der Nenner eine von null verschiedene ganze Zahl ist. Mathematisch ausgedrückt hat eine rationale Zahl die Form \( \frac{a}{b} \), wobei \( a \) und \( b \) ganze Zahlen sind und \( b \neq 0 \). Rationale Zahlen umfassen positive und negative Brüche sowie ganze Zahlen, da jede ganze Zahl als Bruch mit dem Nenner 1 dargestellt werden kann.
0,5 als Bruch kann als 1/2 dargestellt werden.
1/2 kann durch verschiedene Kombinationen von Zahlen dargestellt werden. Eine Möglichkeit ist 1 geteilt durch 2, also 1 ÷ 2 = 1/2. Eine andere Möglichkeit ist 2 geteilt durch 4, also... [mehr]
Um 5250 durch 3500 zu teilen, kannst du den Bruch vereinfachen. 1. Schreibe den Bruch: \( \frac{5250}{3500} \). 2. Teile sowohl den Zähler als auch den Nenner durch 3500: \( \frac{5250 \di... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Der gemeinsame Nenner von 445 und 1000 ist das kleinste gemeinsame Vielfache (kgV) dieser beiden Zahlen. Um das kgV zu finden, zerlegen wir beide Zahlen in ihre Primfaktoren: - 445 = 5 × 89 - 1... [mehr]
1/2 mal fünf ergibt 2,5.
1/4 + 2/4 ergibt 3/4.
Um die Brüche zu subtrahieren, bringe sie auf einen gemeinsamen Nenner. In diesem Fall ist der Nenner bereits gleich (14): \[ \frac{9}{14} - \frac{2}{14} = \frac{9 - 2}{14} = \frac{7}{14} \] Je... [mehr]
Um die Rechnung \( \frac{5}{7} + 6 + 7 \) durchzuführen, addiere zuerst die ganzen Zahlen: \( 6 + 7 = 13 \). Dann addiere \( \frac{5}{7} \) zu \( 13 \): \( 13 + \frac{5}{7} = \frac{13 \cdot 7}... [mehr]
Die Summe von \( \frac{2}{3} + \frac{2}{3} \) ergibt \( \frac{4}{3} \). Als gemischte Zahl ausgedrückt ist das \( 1 \frac{1}{3} \).