In der klassischen Geometrie, insbesondere in der euklidischen Geometrie, stehen im Zentrum die sogenannten "Konstruktionen mit Zirkel und Lineal". Hierbei sind nur solche Objekte zugelassen... [mehr]
Euklid, der als einer der Begründer der Geometrie gilt, arbeitete in seiner "Elemente" vor allem mit konstruktiven Methoden und geometrischen Beweisen. Seine Ansätze basierten auf klaren, intuitiven Konstruktionen und der Verwendung von Axiomen und Postulaten. Konstruktive Grenzprozesse, wie sie in der modernen Analysis verwendet werden, waren zu Euklids Zeiten noch nicht entwickelt oder verstanden. Euklid konzentrierte sich auf endliche Konstruktionen und die Geometrie der Figuren, während Grenzprozesse oft unendliche Reihen oder Annäherungen beinhalten, die in der antiken Mathematik nicht im gleichen Maße behandelt wurden. Die Konzepte von Unendlichkeit und Grenzwerten wurden erst viel später, insbesondere im 17. Jahrhundert mit der Entwicklung der Infinitesimalrechnung, systematisch erforscht. Daher ist es nicht so sehr eine Frage der Ablehnung von Grenzprozessen, sondern vielmehr eine Frage des historischen Kontexts und der mathematischen Entwicklung zu Euklids Zeiten.
In der klassischen Geometrie, insbesondere in der euklidischen Geometrie, stehen im Zentrum die sogenannten "Konstruktionen mit Zirkel und Lineal". Hierbei sind nur solche Objekte zugelassen... [mehr]
Eine geometrische Linie ist in der Mathematik eine unendliche, gerade Verbindung zwischen zwei Punkten ohne Breite und Dicke. Sie verläuft immer in einer Richtung und hat keine Krümmung. Ei... [mehr]
Du meinst vermutlich Nikolai Iwanowitsch Lobatschewski (auch geschrieben Lobachevski oder Lobachevsky). Er war ein russischer Mathematiker, der vor allem für seine Arbeiten zur nicht-euklidischen... [mehr]
Isometrie ist ein Begriff aus der Mathematik, insbesondere der Geometrie. Er bezeichnet eine Abbildung (Transformation) eines Raumes, bei der die Abstände zwischen allen Punkten erhalten bleiben.... [mehr]
Der Schwerpunkt eines Dreiecks ist der Punkt, an dem sich die drei Seitenhalbierenden (also die Geraden, die jeweils einen Eckpunkt mit der Mitte der gegenüberliegenden Seite verbinden) schneiden... [mehr]
Um die gegenseitige Lage von Ebenen und Geraden im Raum zu bestimmen, gehst du folgendermaßen vor: **1. Geradengleichung und Ebenengleichung aufstellen** - Geradengleichung (Parameterform):... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]
Das Winkeldritteln mit Zirkel und Lineal ist in endlich vielen Schritten tatsächlich unmöglich, wie durch die Galoistheorie bewiesen wurde. Die Frage, ob ein exakter unendlicher Grenzprozess... [mehr]
Deine Aussage bezieht sich vermutlich auf eine vorherige Beschreibung oder Aufgabe zu einem Dreieck, bei dem bestimmte Bedingungen nicht erfüllt werden können. Ein Dreieck ist nur dann m&oum... [mehr]