Der Ausdruck \((A^3 - B^3)(A^3 + B^3)\) kann mithilfe der Identität für die Differenz und die Summe von Kuben vereinfacht werden. Zuerst erkennen wir, dass: \[ A^3 - B^3 = (A - B)(A^2 + A... [mehr]
Um den Ausdruck \( \cos(-x + \frac{\pi}{6}) - \cos(x + \frac{\pi}{6}) \) zu vereinfachen, kannst du die Eigenschaft der Kosinusfunktion nutzen, dass \( \cos(-\theta) = \cos(\theta) \). Das bedeutet: \[ \cos(-x + \frac{\pi}{6}) = \cos(x - \frac{\pi}{6}) \] Somit wird der Ausdruck zu: \[ \cos(x - \frac{\pi}{6}) - \cos(x + \frac{\pi}{6}) \] Jetzt kannst du die Differenz der Kosinusfunktionen mit der Formel für die Differenz von Kosinus verwenden: \[ \cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \] Setze \( A = x - \frac{\pi}{6} \) und \( B = x + \frac{\pi}{6} \): 1. \( A + B = (x - \frac{\pi}{6}) + (x + \frac{\pi}{6}) = 2x \) 2. \( A - B = (x - \frac{\pi}{6}) - (x + \frac{\pi}{6}) = -\frac{\pi}{3} \) Setze diese Werte in die Formel ein: \[ \cos(x - \frac{\pi}{6}) - \cos(x + \frac{\pi}{6}) = -2 \sin\left(\frac{2x}{2}\right) \sin\left(\frac{-\frac{\pi}{3}}{2}\right) \] Das vereinfacht sich zu: \[ -2 \sin(x) \sin\left(-\frac{\pi}{6}\right) \] Da \( \sin(-\theta) = -\sin(\theta) \), ergibt sich: \[ -2 \sin(x) \left(-\frac{1}{2}\right) = \sin(x) \] Somit ist die vereinfachte Form des ursprünglichen Ausdrucks: \[ \sin(x) \]
Der Ausdruck \((A^3 - B^3)(A^3 + B^3)\) kann mithilfe der Identität für die Differenz und die Summe von Kuben vereinfacht werden. Zuerst erkennen wir, dass: \[ A^3 - B^3 = (A - B)(A^2 + A... [mehr]
Um den Ausdruck \((5-a) \cdot (12a-5b)\) zu multiplizieren, verwenden wir die distributive Eigenschaft (auch bekannt als das Ausmultiplizieren). 1. Multipliziere \(5\) mit beiden Termen in der zweit... [mehr]
Um den gegebenen Ausdruck zu vereinfachen, fassen wir die reellen und die imaginären Teile zusammen: \[ (5 - 3i) + 4i - + (6i - 3) - (1 + i) \] Zuerst gruppieren wir die reellen Teile: \[ 5 -... [mehr]