10 Prozent von 8,83 sind 0,883.
Um einen unbekannten Exponenten in der Mathematik zu berechnen, kannst du logarithmische Funktionen verwenden. Hier ist ein allgemeiner Ansatz: 1. **Gegebenes Problem**: \( a^x = b \) - \( a \) ist die Basis - \( x \) ist der unbekannte Exponent - \( b \) ist das Ergebnis 2. **Logarithmus anwenden**: Um den Exponenten \( x \) zu isolieren, nimm den Logarithmus auf beiden Seiten der Gleichung. Du kannst den natürlichen Logarithmus (ln) oder den Logarithmus zur Basis 10 (log) verwenden. Hier wird der natürliche Logarithmus verwendet: \[ \ln(a^x) = \ln(b) \] 3. **Logarithmengesetz anwenden**: Nutze die Eigenschaft des Logarithmus, dass \(\ln(a^x) = x \cdot \ln(a)\): \[ x \cdot \ln(a) = \ln(b) \] 4. **Isolieren des Exponenten**: Teile beide Seiten der Gleichung durch \(\ln(a)\), um \( x \) zu isolieren: \[ x = \frac{\ln(b)}{\ln(a)} \] Beispiel: - Gegeben: \( 2^x = 8 \) - Nimm den natürlichen Logarithmus auf beiden Seiten: \(\ln(2^x) = \ln(8)\) - Anwenden des Logarithmengesetzes: \( x \cdot \ln(2) = \ln(8) \) - Isolieren des Exponenten: \( x = \frac{\ln(8)}{\ln(2)} \) Da \( 8 = 2^3 \), ist \( \ln(8) = \ln(2^3) = 3 \cdot \ln(2) \), und somit: \[ x = \frac{3 \cdot \ln(2)}{\ln(2)} = 3 \] Der Exponent \( x \) ist also 3.
10 Prozent von 8,83 sind 0,883.
Das Integral von \((\ln x)^2\) bezüglich \(x\) kannst du mit partieller Integration berechnen. Hier ist die Schritt-für-Schritt-Lösung: Setze: - \(u = (\ln x)^2\) ⇒ \(du = \frac{2... [mehr]
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Das Winkeldritteln mit Zirkel und Lineal ist im Allgemeinen **nicht** mit endlich vielen Schritten möglich. Das ist ein klassisches Problem der antiken Geometrie, das 1837 von Pierre Wantzel bewi... [mehr]
Drei plus vier ergibt sieben.
Eine Differentialgleichung ist eine mathematische Gleichung, in der eine unbekannte Funktion und ihre Ableitungen vorkommen. Sie beschreibt, wie sich eine Größe (z. B. Temperatur, Geschwind... [mehr]
Zuerst wird der Ausdruck mit Klammern berechnet: 28 – (15 + 9) = 28 – 24 = 4Wenn du die Klammern weässt, bleibt der Ausdruck so stehen: 28 – 15 + 9 Nun rechnest du das oh... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Deine Frage ist unklar. Bitte stelle eine klare und präzise Frage.
Der Rechenausdruck lautet: (128 − 99) − (96 − 77) Berechnung: (128 − 99) = 29 (96 − 77) = 19 29 − 19 = 10 Das Ergebnis ist 10.