Die Zahl 0,009 ist eine Dezimalzahl und entspricht neun Tausendstel. In Bruchschreibweise wäre das: 0,009 = 9/1000 Das bedeutet, dass 0,009 neun Teile von insgesamt tausend Teilen eines Ganzen... [mehr]
Der Term \(\frac{1 + x}{1 + x}\) ist für alle Werte von \(x\) definiert, außer für \(x = -1\). Der Grund dafür ist, dass der Nenner \(1 + x\) nicht null sein darf, da eine Division durch null nicht definiert ist. Wenn \(x \neq -1\), kann der Bruch \(\frac{1 + x}{1 + x}\) gekürzt werden. Da der Zähler und der Nenner identisch sind, ergibt sich: \[ \frac{1 + x}{1 + x} = 1 \] Also ist der gekürzte Term für alle \(x \neq -1\) gleich 1.
Die Zahl 0,009 ist eine Dezimalzahl und entspricht neun Tausendstel. In Bruchschreibweise wäre das: 0,009 = 9/1000 Das bedeutet, dass 0,009 neun Teile von insgesamt tausend Teilen eines Ganzen... [mehr]
Deine Frage ist sehr allgemein formuliert. "50%" kann sich auf viele verschiedene Dinge beziehen, zum Beispiel auf einen Prozentsatz, einen Rabatt, eine Wahrscheinlichkeit oder einen Anteil.... [mehr]
Um den Term \(-3x^2 + 15x\) zu vereinfachen oder zu berechnen, gibt es verschiedene Möglichkeiten – je nachdem, was genau gefragt ist: **1. Ausklammern:** Du kannst den gemeinsamen Faktor... [mehr]
\(\left(\frac{x}{2y}\right)^4 = \frac{x^4}{(2y)^4} = \frac{x^4}{16y^4}\)
Die Zahl 20 kann als Bruch geschrieben werden, indem du sie als Zähler und 1 als Nenner verwendest: \[ 20 = \frac{20}{1} \] Das ist die Darstellung von 20 als Bruch.
Um 102 durch 17 zu rechnen, teilst du 102 durch 17: 102 ÷ 17 = 6 Das Ergebnis ist 6.
Um 5250 durch 3500 zu teilen, kannst du den Bruch vereinfachen. 1. Schreibe den Bruch: \( \frac{5250}{3500} \). 2. Teile sowohl den Zähler als auch den Nenner durch 3500: \( \frac{5250 \di... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]