In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Gegenkathete 2.8 cm und die Hypotenuse 4 cm. Setzen wir die Werte in die Formel ein: \[ \sin(α) = \frac{2.8 \, \text{cm}}{4 \, \text{cm}} = 0.7 \] Der Sinus von Alpha (α) beträgt also 0.7.
In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]
Um zu überprüfen, ob ein Dreieck mit den Seitenlängen a = 8,5 cm, b = 3,2 cm und c = 5,2 cm existiert, kannst du die Dreiecksungleichung verwenden. Diese besagt, dass die Summe der L&au... [mehr]