Deine Aussage bezieht sich vermutlich auf eine vorherige Beschreibung oder Aufgabe zu einem Dreieck, bei dem bestimmte Bedingungen nicht erfüllt werden können. Ein Dreieck ist nur dann m&oum... [mehr]
Um die Seitenlängen des gleichschenkligen Dreiecks zu berechnen, bezeichnen wir die Länge der Schenkel mit \( x \) cm. Da die Grundseite um 4 cm größer ist als die Schenkel, beträgt die Länge der Grundseite \( x + 4 \) cm. Der Umfang \( U \) des Dreiecks ist die Summe aller Seitenlängen: \[ U = 2x + (x + 4) \] Setze den Umfang gleich 67 cm: \[ 2x + (x + 4) = 67 \] Das vereinfacht sich zu: \[ 2x + x + 4 = 67 \] \[ 3x + 4 = 67 \] Subtrahiere 4 von beiden Seiten: \[ 3x = 63 \] Teile durch 3: \[ x = 21 \] Jetzt haben wir die Länge der Schenkel. Die Grundseite ist: \[ x + 4 = 21 + 4 = 25 \] Die Seitenlängen des gleichschenkligen Dreiecks sind also: - Schenkel: 21 cm (jeweils) - Grundseite: 25 cm Zusammengefasst sind die Seitenlängen 21 cm, 21 cm und 25 cm.
Deine Aussage bezieht sich vermutlich auf eine vorherige Beschreibung oder Aufgabe zu einem Dreieck, bei dem bestimmte Bedingungen nicht erfüllt werden können. Ein Dreieck ist nur dann m&oum... [mehr]
Die Fläche eines Dreiecks berechnet sich allgemein mit: \[ A = \frac{1}{2} \cdot \text{Grundseite} \cdot \text{zugehörige Höhe} \] In deinem Fall ist die Grundseite die Hypotenuse \(... [mehr]
Der **Sinussatz** und der **Kosinussatz** sind zwei wichtige mathematische Sätze aus der Trigonometrie, die in beliebigen Dreiecken (also nicht nur in rechtwinkligen Dreiecken) verwendet werden.... [mehr]
Um ein Dreieck zu lösen, also alle Seiten und Winkel zu bestimmen, benötigt man in der Regel mindestens drei Angaben, wobei mindestens eine davon eine Seite sein muss. Deine Frage bezieht si... [mehr]