Um zu überprüfen, ob ein Dreieck mit den Seitenlängen a = 8,5 cm, b = 3,2 cm und c = 5,2 cm existiert, kannst du die Dreiecksungleichung verwenden. Diese besagt, dass die Summe der L&au... [mehr]
Um die Seitenlängen des gleichschenkligen Dreiecks zu berechnen, bezeichnen wir die Länge der Schenkel mit \( x \) cm. Da die Grundseite um 4 cm größer ist als die Schenkel, beträgt die Länge der Grundseite \( x + 4 \) cm. Der Umfang \( U \) des Dreiecks ist die Summe aller Seitenlängen: \[ U = 2x + (x + 4) \] Setze den Umfang gleich 67 cm: \[ 2x + (x + 4) = 67 \] Das vereinfacht sich zu: \[ 2x + x + 4 = 67 \] \[ 3x + 4 = 67 \] Subtrahiere 4 von beiden Seiten: \[ 3x = 63 \] Teile durch 3: \[ x = 21 \] Jetzt haben wir die Länge der Schenkel. Die Grundseite ist: \[ x + 4 = 21 + 4 = 25 \] Die Seitenlängen des gleichschenkligen Dreiecks sind also: - Schenkel: 21 cm (jeweils) - Grundseite: 25 cm Zusammengefasst sind die Seitenlängen 21 cm, 21 cm und 25 cm.
Um zu überprüfen, ob ein Dreieck mit den Seitenlängen a = 8,5 cm, b = 3,2 cm und c = 5,2 cm existiert, kannst du die Dreiecksungleichung verwenden. Diese besagt, dass die Summe der L&au... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]