Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
Um die Seitenlängen eines Dreiecks zu berechnen, wenn ein Winkel und eine Seite gegeben sind, kannst du die Sinus- und Kosinusfunktionen verwenden. Hier sind die Schritte, die du befolgen kannst: 1. **Sinussatz**: Der Sinussatz besagt, dass in jedem Dreieck die Verhältnisse der Längen der Seiten zu den Sinuswerten der gegenüberliegenden Winkel gleich sind: \[ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} \] Hierbei sind \(a\), \(b\) und \(c\) die Seitenlängen des Dreiecks, und \(\alpha\), \(\beta\) und \(\gamma\) die gegenüberliegenden Winkel. 2. **Kosinussatz**: Der Kosinussatz ist nützlich, wenn du zwei Seiten und den eingeschlossenen Winkel kennst: \[ c^2 = a^2 + b^2 - 2ab \cdot \cos(\gamma) \] Hierbei ist \(c\) die Seite gegenüber dem Winkel \(\gamma\). ### Beispiel: Angenommen, du kennst eine Seite \(a\) und die Winkel \(\alpha\) und \(\beta\). 1. **Berechne den dritten Winkel**: \[ \gamma = 180^\circ - \alpha - \beta \] 2. **Verwende den Sinussatz**: \[ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} \] Um \(b\) zu berechnen: \[ b = a \cdot \frac{\sin(\beta)}{\sin(\alpha)} \] Um \(c\) zu berechnen: \[ c = a \cdot \frac{\sin(\gamma)}{\sin(\alpha)} \] ### Beispiel mit dem Kosinussatz: Angenommen, du kennst die Seiten \(a\) und \(b\) und den eingeschlossenen Winkel \(\gamma\). 1. **Verwende den Kosinussatz**: \[ c^2 = a^2 + b^2 - 2ab \cdot \cos(\gamma) \] Um \(c\) zu berechnen: \[ c = \sqrt{a^2 + b^2 - 2ab \cdot \cos(\gamma)} \] Diese Methoden ermöglichen es dir, die fehlenden Seitenlängen eines Dreiecks zu berechnen, wenn du einen Winkel und eine Seite oder zwei Seiten und den eingeschlossenen Winkel kennst.
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]
Um zu überprüfen, ob ein Dreieck mit den Seitenlängen a = 8,5 cm, b = 3,2 cm und c = 5,2 cm existiert, kannst du die Dreiecksungleichung verwenden. Diese besagt, dass die Summe der L&au... [mehr]