Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Um die Länge der Seite b einer rechteckigen Pyramide zu berechnen, kannst du den Satz des Pythagoras verwenden. In einer rechteckigen Pyramide ist die Höhe (h) die senkrechte Höhe von der Spitze der Pyramide zur Mitte der Grundfläche, und die Höhe b ist die schräge Höhe von der Spitze zur Ecke der Grundfläche. Die Beziehung zwischen der normalen Höhe (h), der Höhe b und der halben Länge der Seite a (die von der Mitte der Grundfläche zur Ecke reicht) ist: \[ b^2 = h^2 + \left(\frac{a}{2}\right)^2 \] In deinem Fall ist die normale Höhe \( h = 32,76 \, m \) und die schräge Höhe \( b = 45,46 \, m \). Um die Länge der Seite a zu finden, benötigst du die halbe Länge der Seite a. Zuerst berechne \( \left(\frac{a}{2}\right)^2 \): \[ 45,46^2 = 32,76^2 + \left(\frac{a}{2}\right)^2 \] Berechne die Quadrate: \[ 2067,6516 = 1073,2976 + \left(\frac{a}{2}\right)^2 \] Subtrahiere \( 1073,2976 \) von beiden Seiten: \[ 994,354 = \left(\frac{a}{2}\right)^2 \] Nehme die Quadratwurzel: \[ \frac{a}{2} = \sqrt{994,354} \approx 31,5 \, m \] Multipliziere mit 2, um die gesamte Länge der Seite a zu finden: \[ a \approx 63,0 \, m \] Die Länge der Seite b ist also 63,0 m.
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]
Deine Aussage bezieht sich vermutlich auf eine vorherige Beschreibung oder Aufgabe zu einem Dreieck, bei dem bestimmte Bedingungen nicht erfüllt werden können. Ein Dreieck ist nur dann m&oum... [mehr]
Ein Verbindungsvektor ist ein Vektor, der zwei Punkte im Raum miteinander verbindet. Die wichtigsten Eigenschaften von Verbindungsvektoren sind: 1. **Definition**: Der Verbindungsvektor \(\vec{A... [mehr]
Ein Parallelogramm erkennst du an folgenden Eigenschaften: 1. **Gegenüberliegende Seiten sind parallel**: Die jeweils gegenüberliegenden Seiten verlaufen exakt parallel zueinander. 2. **Geg... [mehr]
Nein, vier Linien können sich im Allgemeinen nicht nur in genau zwei Punkten schneiden. **Begründung:** Wenn sich vier Linien schneiden, gibt es verschiedene Möglichkeiten, wie sie s... [mehr]
Vier Geraden können sich in genau zwei Punkten schneiden, aber nur unter bestimmten Bedingungen: - Zwei der Geraden müssen sich in einem Punkt schneiden. - Die anderen beiden Geraden mü... [mehr]
Vier Geraden können sich auf verschiedene Arten schneiden, je nachdem, wie sie zueinander liegen. Die „Punkte“, die du meinst, sind vermutlich die Schnittpunkte der Geraden. **Allgem... [mehr]
Ein Torus ist ein geometrischer Körper, der die Form eines „Donuts“ oder „Reifen“ hat. Mathematisch gesehen entsteht ein Torus, wenn man einen Kreis um eine Achse auß... [mehr]