Wie lang ist die Seite b einer rechteckigen Pyramide mit einer normalen Höhe von 32,76 m und einer Höhe b von 45,46 m?

Antwort

Um die Länge der Seite b einer rechteckigen Pyramide zu berechnen, kannst du den Satz des Pythagoras verwenden. In einer rechteckigen Pyramide ist die Höhe (h) die senkrechte Höhe von der Spitze der Pyramide zur Mitte der Grundfläche, und die Höhe b ist die schräge Höhe von der Spitze zur Ecke der Grundfläche. Die Beziehung zwischen der normalen Höhe (h), der Höhe b und der halben Länge der Seite a (die von der Mitte der Grundfläche zur Ecke reicht) ist: \[ b^2 = h^2 + \left(\frac{a}{2}\right)^2 \] In deinem Fall ist die normale Höhe \( h = 32,76 \, m \) und die schräge Höhe \( b = 45,46 \, m \). Um die Länge der Seite a zu finden, benötigst du die halbe Länge der Seite a. Zuerst berechne \( \left(\frac{a}{2}\right)^2 \): \[ 45,46^2 = 32,76^2 + \left(\frac{a}{2}\right)^2 \] Berechne die Quadrate: \[ 2067,6516 = 1073,2976 + \left(\frac{a}{2}\right)^2 \] Subtrahiere \( 1073,2976 \) von beiden Seiten: \[ 994,354 = \left(\frac{a}{2}\right)^2 \] Nehme die Quadratwurzel: \[ \frac{a}{2} = \sqrt{994,354} \approx 31,5 \, m \] Multipliziere mit 2, um die gesamte Länge der Seite a zu finden: \[ a \approx 63,0 \, m \] Die Länge der Seite b ist also 63,0 m.

KI fragen

Verwandte Fragen

Warum sind Parabeln in der klassischen Geometrie ausgeschlossen, in der cohaerentischen Geometrie aber erlaubt?

In der klassischen Geometrie, insbesondere in der euklidischen Geometrie, stehen im Zentrum die sogenannten "Konstruktionen mit Zirkel und Lineal". Hierbei sind nur solche Objekte zugelassen... [mehr]

Was unterscheidet eine geometrische Linie von einer Kurve?

Eine geometrische Linie ist in der Mathematik eine unendliche, gerade Verbindung zwischen zwei Punkten ohne Breite und Dicke. Sie verläuft immer in einer Richtung und hat keine Krümmung. Ei... [mehr]

Wie hoch steht der Sand in einer 4 m x 2,5 m großen Sandkiste bei 2 Kubikmetern Sand?

Um die Höhe des Sands in der Sandkiste zu berechnen, nutzt du die Formel für das Volumen eines Quaders: **Volumen = Grundfläche × Höhe** Gegeben: - Grundfläche: 4 m &t... [mehr]

Wie heißt der Mathematiker, der ähnlich wie Laboschewski heißt?

Du meinst vermutlich Nikolai Iwanowitsch Lobatschewski (auch geschrieben Lobachevski oder Lobachevsky). Er war ein russischer Mathematiker, der vor allem für seine Arbeiten zur nicht-euklidischen... [mehr]

Was bedeutet Isometrie?

Isometrie ist ein Begriff aus der Mathematik, insbesondere der Geometrie. Er bezeichnet eine Abbildung (Transformation) eines Raumes, bei der die Abstände zwischen allen Punkten erhalten bleiben.... [mehr]

Was ist der Schwerpunkt eines Dreiecks?

Der Schwerpunkt eines Dreiecks ist der Punkt, an dem sich die drei Seitenhalbierenden (also die Geraden, die jeweils einen Eckpunkt mit der Mitte der gegenüberliegenden Seite verbinden) schneiden... [mehr]

Wie bestimme ich die gegenseitige Lage von Ebenen und Geraden?

Um die gegenseitige Lage von Ebenen und Geraden im Raum zu bestimmen, gehst du folgendermaßen vor: **1. Geradengleichung und Ebenengleichung aufstellen** - Geradengleichung (Parameterform):... [mehr]

Wie kann ich aus Entfernung und Höhe den Winkel berechnen?

Um den Winkel zu berechnen, wenn du die Entfernung (Grundlinie) und die Höhe (Gegenkathete) hast, kannst du die folgende Formel aus der Trigonometrie verwenden: **tan(α) = Höhe / Entf... [mehr]

Wie ändert sich das Kegelvolumen bei doppeltem Radius und halber Höhe?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn Radius und Höhe verdoppelt werden?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]