Finde mögliche Werte für x in einem Dreieck mit a = x, b = x + 1 und c = x + 2.

Antwort

Um die möglichen Werte für \( x \) in einem Dreieck mit den Seitenlängen \( a = x \), \( b = x + 1 \) und \( c = x + 2 \) zu finden, müssen die Dreiecksungleichungen erfüllt sein. Diese besagen, dass die Summe der Längen zweier Seiten immer größer sein muss als die Länge der dritten Seite. Das führt zu den folgenden drei Ungleichungen: 1. \( a + b > c \) 2. \( a + c > b \) 3. \( b + c > a \) Setzen wir die gegebenen Seitenlängen ein: 1. \( x + (x + 1) > x + 2 \) 2. \( x + (x + 2) > x + 1 \) 3. \( (x + 1) + (x + 2) > x \) Lösen wir diese Ungleichungen: 1. \( 2x + 1 > x + 2 \) \[ 2x + 1 > x + 2 \] \[ 2x - x > 2 1 \] \[ x > 1 \] 2. \( 2x + 2 > x + 1 \) \[ 2x + 2 > x + 1 \] \[ 2x - x > 1 - 2 \] \[ x > -1 \] 3. \( 2x + 3 > x \) \[ 2x + 3 > x \] \[ 2x - x > -3 \] \[ x >3 \] Die strengste Bedingung ist \( x > 1 \). Die anderen beiden Ungleichungen sind immer erfüllt, wenn \( x > 1 \). Daher ist die Lösung für \( x \): \[ x > 1 \]

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Existiert dieses Dreieck? a=8,5cm; b=3,2cm; c=5,2cm?

Um zu überprüfen, ob ein Dreieck mit den Seitenlängen a = 8,5 cm, b = 3,2 cm und c = 5,2 cm existiert, kannst du die Dreiecksungleichung verwenden. Diese besagt, dass die Summe der L&au... [mehr]

Was ist der Sinus von Alpha in einem Dreieck mit Ankathete 2.8 cm, Hypotenuse 4 cm und Gegenkathete 2.8 cm?

Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]

Was ist der Sinus von Alpha in einem Dreieck mit Hypotenuse 2,5 cm, Gegenkathete 3 cm und Ankathete 3,9 cm?

In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]

Was ist Sin( Alpha) eines Dreiecks mit Hypotenuse 4 cm, Ankathete 3,4 cm und Gegenkathete 2,1 cm?

Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]