Das Zeichen „\times“ steht in der Mathematik für das Multiplikationszeichen (×). Es wird verwendet, um die Multiplikation zweier Zahlen oder Ausdrücke darzustellen. Zum Bei... [mehr]
Um die Klammer aufzulösen, multiplizierst du die beiden Terme: \[ (-a - 3.4) \times (-1.3) \] Das ergibt: \[ (-a) \times (-1.3) + (-3.4) \times (-1.3) \] Das vereinfacht sich zu: \[ 1.3a + 4.42 \] Das Endergebnis ist also: \[ 1.3a + 4.42 \]
Das Zeichen „\times“ steht in der Mathematik für das Multiplikationszeichen (×). Es wird verwendet, um die Multiplikation zweier Zahlen oder Ausdrücke darzustellen. Zum Bei... [mehr]
Das Zeichen „ד steht meist für das mathematische Symbol „Mal“ oder „Multiplikation“. Es wird verwendet, um auszudrücken, dass zwei Zahlen miteinand... [mehr]
Die Aufgabe lautet: \( x^8 \cdot 9x^{-3} \) Zuerst die Potenzen mit gleicher Basis (x) zusammenfassen: \( x^8 \cdot x^{-3} = x^{8 + (-3)} = x^5 \) Dann bleibt noch die 9 als Faktor: \( 9 \cdot x... [mehr]
Um den Ausdruck \(-2x^4 \cdot (-3x^{-3})\) zu vereinfachen, gehe wie folgt vor: 1. Multipliziere die Zahlen: \(-2 \cdot -3 = 6\) 2. Multipliziere die Potenzen mit gleicher Basis (x): \(x^4 \cd... [mehr]
Die Aufgabe 8 : 2(2+2) ist ein Beispiel für eine Rechenaufgabe, bei der die Reihenfolge der Rechenschritte wichtig ist. Zuerst löst du die Klammer auf: 2 + 2 = 4 Dann steht da: 8 : 2 &time... [mehr]
Der Ausdruck `-1 OR 3*2>5` sieht aus wie ein logischer Ausdruck, wie er in SQL oder Programmiersprachen verwendet wird. - `3*2>5` ergibt `6>5`, was `wahr` (true) ist. - `-1` wird in vielen P... [mehr]
Um den gesuchten Faktor zu berechnen, teilst du 215 durch 92: 215 ÷ 92 ≈ 2,337 Der Faktor ist also ungefähr **2,337**.
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]