Wie wende ich das Gleichsetzungsverfahren auf die Gleichungen -3x + y = 6 und 3x - y = 6 an?

Antwort

Das Gleichsetzungsverfahren ist eine Methode zur Lösung von linearen Gleichungssystemen. Hier ist eine Schrittür-Schritt-Anleitung Lösung des gegebenen Gleichssystems: 1. Gegebenes Gleichssystem: \[ \begin{} -3x + y = \\ 3 - y = \endcases} \] 2. Gleichungen nach \( y \ auflösen: \[ y =6 + 3x \quad \text(aus der ersten Gleichung)} \ \[ = 3x 6 \quad \text(aus der zweiten Gleichung)} \] 3. Die beiden Ausdrücke für \( y \) gleichsetzen: \[ 6 + 3x = 3x - 6 \] 4. Die Gleichung vereinfachen: \[ 6 + x - 3x = -6 \] \[ 6 = -6 \] Diese Gleichung ist offensichtlich falsch, was bedeutet, dass das ursprüngliche Gleichungssystem keine hat. Die beiden Geraden sind parallel und schneiden sich nicht. Das Gleichungssystem ist also widersprüchlich und hat keine Lösung.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

(A^2 + B^2)²?

Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]

(9a + 15b)²?

Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]

(5x-2y) hoch 2?

Der Ausdruck \((5x - 2y)^2\) kann durch Anwendung der binomischen Formel \((a - b)^2 = a^2 - 2ab + b^2\) vereinfacht werden. Hier ist \(a = 5x\) und \(b = 2y\). Die Berechnung ergibt: \[ (5x - 2y)^2... [mehr]

Was ist 3x*x?

Die Gleichung \(3x \cdot x\) kann vereinfacht werden zu \(3x^2\).

Löse durch Faktorisieren: (9ab²-6a²b):3ab?

Um den Ausdruck \((9ab^2 - 6a^2b):3ab\) durch Faktorisieren zu lösen, gehen wir wie folgt vor: 1. **Faktorisieren des Zählers**: Der Ausdruck \(9ab^2 - 6a^2b\) kann faktorisieren werden... [mehr]

xy - zy gleiche Faktoren ausklammern?

Um die Terme \(xy - zy\) zu faktorisieren, kannst du den gemeinsamen Faktor \(y\) ausklammern. Das sieht dann so aus: \[ xy - zy = y(x - z) \] Somit ist die faktorisierte Form \(y(x - z)\).

13a - 13b; gleiche Faktoren ausklammern?

Um den Ausdruck \(13a - 13b\) zu vereinfachen, kannst den gemeinsamen Faktor \(13\) ausklammern. Das sieht dann so aus: \[ 13a - 13b = 13(a - b) \] Der vereinfachte Ausdruck ist also \(13(a - b)\)... [mehr]

15x - (9x + 7) + (6 - 2x) - (5x + 3) - xy

Um den Ausdruck \( 15x - (9x + 7) + (6 - 2x) - (5x + 3) - xy \) zu vereinfachen, folge diesen Schritten: 1. Entferne die Klammern: \[ 15x - 9x - 7 + 6 - 2x - 5x - 3 - xy \] 2. Fasse die \(... [mehr]

15x - (9x + 7) + (6 - 2x) • (5x + 3) - xy?

Um den Ausdruck \( 15 \times -(9x + 7) + (6 - 2x) \cdot (5x + 3) - xy \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. **Erster Teil**: \( 15 \times -(9x + 7) \) \[ = -15 \times 9... [mehr]

Oder mit a(a+b) - (a^2 + b)(a - b)?

Um den Ausdruck \( a(a+b) - (a^2+b)(a-b) \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. Zuerst multiplizieren wir die Terme aus: \[ a(a+b) = a^2 + ab \] \[ (a^2 + b)(a... [mehr]