Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
Um die Länge der Basis und der Schenkel eines gleichschenigen Dreiecks zu berechnen wenn der Umfang 33,2 cm beträgt und jeder Schenkel 4 cm länger als die Basis ist, kannst du folgende Gleichung aufstellen: . Bezeichne die Länge der Basis mit \( x \). 2. Da jeder Schenkel 4 cm länger als die Basis ist, beträgt die Länge eines Schenkels \( x + 4 \). Der Umfang eines gleichschenkligen Dreiecks ist die Summe der Längen der beiden Schenkel und der Basis. Daher ergibt sich die Gleichung: \[ x + (x + 4) + (x + 4) = 33,2 \] Vereinfache die Gleichung: \[ x + x + 4 + x + 4 = 33,2 \] \[ 3x + 8 = 33,2 \] Subtrahiere 8 von beiden Seiten der Gleichung: \[ 3x = 25,2 \] Teile beide Seiten durch 3: \[ x = 8,4 \] Die Basis ist also 8,4 cm lang. Die Schenkel sind jeweils: \[ x + 4 = 8,4 + 4 = 12,4 \] Die Schenkel sind also jeweils 12,4 cm lang.
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]
Um zu überprüfen, ob ein Dreieck mit den Seitenlängen a = 8,5 cm, b = 3,2 cm und c = 5,2 cm existiert, kannst du die Dreiecksungleichung verwenden. Diese besagt, dass die Summe der L&au... [mehr]