Deine Unterscheidung zwischen „cohaerentischer Geometrie“ und „euklidischer Geometrie“ scheint auf einer speziellen Definition oder Interpretation zu beruhen, die in der klassi... [mehr]
Ein Thaleskreis ist ein Kreis, der über einer Strecke als Durchmesser konstruiert wird. Jeder Punkt auf dem Kreis, der nicht auf dem Durchmesser liegt, bildet mit den Endpunkten des Durchmessers ein rechtwinkliges Dreieck (Satz des Thales). **Beispielhafte Skizze eines Thaleskreises:** ``` • P / \ / \ / \ A •---------• B ``` **Beschreibung:** - Die Punkte **A** und **B** sind die Endpunkte des Durchmessers des Kreises. - Der Kreis verläuft durch A und B. - Der Punkt **P** liegt auf dem Kreis (aber nicht auf dem Durchmesser). - Das Dreieck **APB** ist rechtwinklig im Punkt **P**. **So sieht ein Thaleskreis aus:** - Zeichne eine Strecke AB. - Konstruiere den Kreis mit AB als Durchmesser. - Jeder Punkt P auf dem Kreis (außer A und B) bildet mit A und B ein rechtwinkliges Dreieck. Weitere Informationen findest du z.B. bei [Wikipedia: Thaleskreis](https://de.wikipedia.org/wiki/Thaleskreis).
Deine Unterscheidung zwischen „cohaerentischer Geometrie“ und „euklidischer Geometrie“ scheint auf einer speziellen Definition oder Interpretation zu beruhen, die in der klassi... [mehr]
Deine Aussage ist inhaltlich nicht ganz korrekt und die Begriffe sind teilweise unklar oder nicht standardisiert. Es gibt keine allgemein anerkannte „cohaerentische Geometrie“ in der Mathe... [mehr]
Du hast recht, dass Archimedes in seinen Arbeiten oft mit Zahlen beziehungsweise Zahlenverhältnissen gearbeitet hat, während klassische geometrische Konstruktionen (etwa mit Zirkel und Linea... [mehr]
Die archimedische Ermittlung des Kreisumfangs bzw. des Kreisverhältnisses (also der Zahl π) ist tatsächlich ein durchgehend rein geometrisch konstruierter Grenzprozess. Archimedes hat da... [mehr]
Eine geometrische Entität ist ein grundlegendes Element der Geometrie, das eine bestimmte Form oder Lage im Raum beschreibt. Zu den wichtigsten geometrischen Entitäten zählen Punkte, Li... [mehr]
Der Begriff „intrinsisch plausibel“ ist kein feststehender oder historisch klar definierter Begriff in der Mathematik oder Geometrie. Er taucht in der mathematischen Literatur nicht als st... [mehr]
Cohaerentische Geometrie legt Wert darauf, dass geometrische Konstruktionen und Begriffe aus sich selbst heraus, also **intrinsisch**, plausibel und nachvollziehbar sind. Das bedeutet, dass die Defini... [mehr]
Der Begriff „intrinsische Plausibilität geometrischer Konstruktion“ bezieht sich auf die Frage, wie überzeugend oder nachvollziehbar eine geometrische Konstruktion aus sich selbs... [mehr]
In der klassischen Geometrie, insbesondere in der euklidischen Geometrie, stehen im Zentrum die sogenannten "Konstruktionen mit Zirkel und Lineal". Hierbei sind nur solche Objekte zugelassen... [mehr]
Eine geometrische Linie ist in der Mathematik eine unendliche, gerade Verbindung zwischen zwei Punkten ohne Breite und Dicke. Sie verläuft immer in einer Richtung und hat keine Krümmung. Ei... [mehr]