Ermittle alle Winkel x im Bogenmaß mit 0 < x < 2 und cos(x) = -0,4?

Antwort

Um die Winkel \( x \) im Bogenmaß zu ermitteln, für die \( \cos(x) = -0,4 \) und \( 0 < x < 2\pi \) gilt, kannst du die Umkehrfunktion des Kosinus, den Arkuskosinus (\(\arccos\)), verwenden. Beachte, dass der Kosinus in zwei Bereichen negativ ist: im zweiten und im dritten Quadranten. 1. Berechne den Hauptwert des Arkuskosinus: \[ x_1 = \arccos(-0,4) \] 2. Da der Kosinusfunktion symmetrisch ist, gibt es zwei Lösungen im Intervall \( 0 < x < 2\pi \): - Eine im zweiten Quadranten: \( x_1 = \pi - \arccos(0,4) \) - Eine im dritten Quadranten: \( x_2 = \pi + \arccos(0,4) \) Die genauen Werte kannst du mit einem Taschenrechner oder einer Software berechnen: \[ x_1 = \pi - \arccos(0,4) \approx 1,9823 \] \[ x_2 = \pi + \arccos(0,4) \approx 4,3009 \] Also sind die Winkel \( x \) im Bogenmaß, die die Bedingung \( \cos(x) = -0,4 \) erfüllen und im Intervall \( 0 < x < 2\pi \) liegen, ungefähr: \[ x_1 \approx 1,9823 \] \[ x_2 \approx 4,3009 \]

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Sind bei einer Tautologie alle Winkel gleich groß? Ja oder nein?

Ja, bei einem Quadrat sind alle Winkel gleich groß. Jeder Winkel misst 90 Grad.