Um die Winkelneigung (den Winkel α) zu berechnen, wenn die Gegenkathete 1 mm und die Ankathete 40 mm beträgt, verwendest du die Tangens-Funktion: \[ \tan(\alpha) = \frac{\text{Gegenkathete... [mehr]
Um die Winkel \( x \) im Bogenmaß zu ermitteln, für die \( \cos(x) = -0,4 \) und \( 0 < x < 2\pi \) gilt, kannst du die Umkehrfunktion des Kosinus, den Arkuskosinus (\(\arccos\)), verwenden. Beachte, dass der Kosinus in zwei Bereichen negativ ist: im zweiten und im dritten Quadranten. 1. Berechne den Hauptwert des Arkuskosinus: \[ x_1 = \arccos(-0,4) \] 2. Da der Kosinusfunktion symmetrisch ist, gibt es zwei Lösungen im Intervall \( 0 < x < 2\pi \): - Eine im zweiten Quadranten: \( x_1 = \pi - \arccos(0,4) \) - Eine im dritten Quadranten: \( x_2 = \pi + \arccos(0,4) \) Die genauen Werte kannst du mit einem Taschenrechner oder einer Software berechnen: \[ x_1 = \pi - \arccos(0,4) \approx 1,9823 \] \[ x_2 = \pi + \arccos(0,4) \approx 4,3009 \] Also sind die Winkel \( x \) im Bogenmaß, die die Bedingung \( \cos(x) = -0,4 \) erfüllen und im Intervall \( 0 < x < 2\pi \) liegen, ungefähr: \[ x_1 \approx 1,9823 \] \[ x_2 \approx 4,3009 \]
Um die Winkelneigung (den Winkel α) zu berechnen, wenn die Gegenkathete 1 mm und die Ankathete 40 mm beträgt, verwendest du die Tangens-Funktion: \[ \tan(\alpha) = \frac{\text{Gegenkathete... [mehr]
Der Tangens eines Winkels ist definiert als das Verhältnis von Gegenkathete zu Ankathete in einem rechtwinkligen Dreieck. Gesucht ist also der Winkel \( x \), für den gilt: \[ \tan(x) = 2 \... [mehr]
Um den Winkel zu berechnen, wenn du die Entfernung (Grundlinie) und die Höhe (Gegenkathete) hast, kannst du die folgende Formel aus der Trigonometrie verwenden: **tan(α) = Höhe / Entf... [mehr]
Um den Winkel zwischen der Ebene \( F: 2x_1 + x_2 = 4 \) und der \( x_1x_3 \)-Ebene zu berechnen, gehst du wie folgt vor: **1. Bestimme die Normalenvektoren:** - Die Ebene \( F \) hat die Gleichung... [mehr]
Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]