Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Der Ausdruck \(\frac{3}{3 + 2}\) bedeutet, dass du die Zahl 3 durch die Summe von 3 und 2 teilst. Zuerst berechnest du die Summe im Nenner: \(3 + 2 = 5\). Dann du das in den Bruch ein: \(\frac{3}{5}\). Das Ergebnis ist also \(\frac{3}{5}\), was auch als 0,6 oder 60 % dargestellt werden kann.
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Um 102 durch 17 zu rechnen, teilst du 102 durch 17: 102 ÷ 17 = 6 Das Ergebnis ist 6.
0,5 als Bruch kann als 1/2 dargestellt werden.
10 Prozent von 8,83 sind 0,883.
Das Integral von \((\ln x)^2\) bezüglich \(x\) kannst du mit partieller Integration berechnen. Hier ist die Schritt-für-Schritt-Lösung: Setze: - \(u = (\ln x)^2\) ⇒ \(du = \frac{2... [mehr]
\(\left(\frac{x}{2y}\right)^4 = \frac{x^4}{(2y)^4} = \frac{x^4}{16y^4}\)
Die Zahl 20 kann als Bruch geschrieben werden, indem du sie als Zähler und 1 als Nenner verwendest: \[ 20 = \frac{20}{1} \] Das ist die Darstellung von 20 als Bruch.
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Das Winkeldritteln mit Zirkel und Lineal ist im Allgemeinen **nicht** mit endlich vielen Schritten möglich. Das ist ein klassisches Problem der antiken Geometrie, das 1837 von Pierre Wantzel bewi... [mehr]
Drei plus vier ergibt sieben.