Wahrscheinlichkeiten, relative Häufigkeiten und absolute Häufigkeiten sind drei verschiedene Begriffe aus der Statistik, die oft miteinander verwechselt werden. Hier die Unterschiede: **1.... [mehr]
Um die Wahrscheinlichkeiten für die verschiedenen Kombinationen von Kugeln zu berechnen, die bei zwei Ziehungen ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge gezogen werden, kann man die Wahrscheinlichkeiten für jede Kombination wie folgt berechnen: 1. **Gesamtanzahl der Kugeln:** \( 6 \text{ (rot)} + 3 \text{ (weiß)} + 1 \text{ (schwarz)} = 10 \text{ Kugeln} \) 2. **Gesamtanzahl der möglichen Ziehungen:** Da die Reihenfolge keine Rolle spielt, verwenden wir die Kombinationen: \[ \binom{10}{2} = \frac{10 \times 9}{2 \times 1} = 45 \] 3. **Wahrscheinlichkeiten für jede Kombination:** - **ww (zwei weiße Kugeln):** \[ \binom{3}{2} = \frac{3 \times 2}{2 \times 1} = 3 \] Wahrscheinlichkeit: \(\frac{3}{45} = \frac{1}{15}\) - **rr (zwei rote Kugeln):** \[ \binom{6}{2} = \frac{6 \times 5}{2 \times 1} = 15 \] Wahrscheinlichkeit: \(\frac{15}{45} = \frac{1}{3}\) - **ws (eine weiße und eine schwarze Kugel):** \[ \binom{3}{1} \times \binom{1}{1} = 3 \times 1 = 3 \] Wahrscheinlichkeit: \(\frac{3}{45} = \frac{1}{15}\) - **rs (eine rote und eine schwarze Kugel):** \[ \binom{6}{1} \times \binom{1}{1} = 6 \times 1 = 6 \] Wahrscheinlichkeit: \(\frac{6}{45} = \frac{2}{15}\) - **wr (eine weiße und eine rote Kugel):** \[ \binom{3}{1} \times \binom{6}{1} = 3 \times 6 = 18 \] Wahrscheinlichkeit: \(\frac{18}{45} = \frac{2}{5}\) - **s (eine schwarze Kugel):** Da es nur eine schwarze Kugel gibt, kann sie nur in Kombination mit einer anderen Farbe gezogen werden. Die Wahrscheinlichkeit für eine einzelne schwarze Kugel ist daher nicht relevant in diesem Kontext. Zusammengefasst sind die Wahrscheinlichkeiten für die Kombinationen: - ww: \(\frac{1}{15}\) - rr: \(\frac{1}{3}\) - ws: \(\frac{1}{15}\) - rs: \(\frac{2}{15}\) - wr: \(\frac{2}{5}\) Diese Wahrscheinlichkeiten decken alle möglichen Kombinationen ab, die bei zwei Ziehungen ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auftreten können.
Wahrscheinlichkeiten, relative Häufigkeiten und absolute Häufigkeiten sind drei verschiedene Begriffe aus der Statistik, die oft miteinander verwechselt werden. Hier die Unterschiede: **1.... [mehr]
Bei drei Würfen mit einem normalen Würfel (6 Seiten) möchtest du wissen, wie groß die Wahrscheinlichkeit ist, dass **alle drei Würfe verschiedene Augenzahlen zeigen**. **L&o... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass man beim Würfeln nur verschiedene Augenzahlen erhält, muss zunächst klar sein, **wie viele Würfel** geworfen werden. Da das in deiner F... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass aus einem Kartenspiel mit 32 Karten genau die 8 Kreuz-Karten gezogen werden, kannst du die folgende Formel verwenden: Die Gesamtanzahl der Möglichkei... [mehr]