Wahrscheinlichkeiten, relative Häufigkeiten und absolute Häufigkeiten sind drei verschiedene Begriffe aus der Statistik, die oft miteinander verwechselt werden. Hier die Unterschiede: **1.... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass von 10 Glühbirnen höchstens 2 kaputt sind, wenn durchschnittlich 10% kaputt sind, kann die Binomialverteilung verwendet werden. Die Binomialverteilung beschreibt die Anzahl der Erfolge in einer festen Anzahl von unabhängigen Versuchen, wobei jeder Versuch nur zwei mögliche Ergebnisse hat (Erfolg oder Misserfolg). Die Formel für die Binomialverteilung lautet: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] wobei: - \( n \) die Anzahl der Versuche ist (in diesem Fall 10), - \( k \) die Anzahl der Erfolge (kaputte Glühbirnen) ist, - \( p \) die Erfolgswahrscheinlichkeit (in diesem Fall 0.1) ist, - \( \binom{n}{k} \) der Binomialkoeffizient ist, der berechnet wird als \( \frac{n!}{k!(n-k)!} \). Die Wahrscheinlichkeit, dass höchstens 2 Glühbirnen kaputt sind, ist die Summe der Wahrscheinlichkeiten, dass 0, 1 oder 2 Glühbirnen kaputt sind: \[ P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) \] Berechnen wir diese Wahrscheinlichkeiten einzeln: 1. \( P(X = 0) \): \[ P(X = 0) = \binom{10}{0} (0.1)^0 (0.9)^{10} = 1 \cdot 1 \cdot (0.9)^{10} \approx 0.3487 \] 2. \( P(X = 1) \): \[ P(X = 1) = \binom{10}{1} (0.1)^1 (0.9)^9 = 10 \cdot 0.1 \cdot (0.9)^9 \approx 0.3874 \] 3. \( P(X = 2) \): \[ P(X = 2) = \binom{10}{2} (0.1)^2 (0.9)^8 = 45 \cdot 0.01 \cdot (0.9)^8 \approx 0.1937 \] Nun addieren wir diese Wahrscheinlichkeiten: \[ P(X \leq 2) \approx 0.3487 + 0.3874 + 0.1937 = 0.9298 \] Die Wahrscheinlichkeit, dass von 10 Glühbirnen höchstens 2 kaputt sind, beträgt also ungefähr 92.98%.
Wahrscheinlichkeiten, relative Häufigkeiten und absolute Häufigkeiten sind drei verschiedene Begriffe aus der Statistik, die oft miteinander verwechselt werden. Hier die Unterschiede: **1.... [mehr]
Bei drei Würfen mit einem normalen Würfel (6 Seiten) möchtest du wissen, wie groß die Wahrscheinlichkeit ist, dass **alle drei Würfe verschiedene Augenzahlen zeigen**. **L&o... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass man beim Würfeln nur verschiedene Augenzahlen erhält, muss zunächst klar sein, **wie viele Würfel** geworfen werden. Da das in deiner F... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass aus einem Kartenspiel mit 32 Karten genau die 8 Kreuz-Karten gezogen werden, kannst du die folgende Formel verwenden: Die Gesamtanzahl der Möglichkei... [mehr]