25% von 100 Pixeln sind 25 Pixel.
Um das Verhalten einer Funktion in den Umgebungen ihrer Definitionslücken zu berechnen, gehst du wie folgt vor: 1. **Identifiziere die Definitionslücken**: Bestimme die Stellen, an denen die Funktion nicht definiert ist. Diese können durch Nullstellen des Nenners bei gebrochen-rationalen Funktionen oder durch andere Unstetigkeiten entstehen. 2. **Grenzwerte untersuchen**: Berechne die Grenzwerte der Funktion, wenn du dich den Definitionslücken von links und von rechts näherst. Das bedeutet, du betrachtest die einseitigen Grenzwerte \(\lim_{x \to a^-} f(x)\) und \(\lim_{x \to a^+} f(x)\), wobei \(a\) die Stelle der Definitionslücke ist. 3. **Verhalten analysieren**: Untersuche, ob die Grenzwerte endlich oder unendlich sind. Dies gibt dir Aufschluss darüber, ob die Funktion in der Nähe der Definitionslücke gegen einen bestimmten Wert strebt oder ob sie asymptotisch gegen unendlich geht. 4. **Typ der Definitionslücke bestimmen**: Basierend auf den Grenzwerten kannst du den Typ der Definitionslücke bestimmen: - **Hebbare Lücke**: Wenn die Grenzwerte von links und rechts existieren und gleich sind, kann die Lücke durch eine geeignete Definition der Funktion an dieser Stelle "behoben" werden. - **Polstelle**: Wenn die Grenzwerte unendlich sind (positiv oder negativ), handelt es sich um eine Polstelle. - **Sprungstelle**: Wenn die Grenzwerte von links und rechts existieren, aber unterschiedlich sind, handelt es sich um eine Sprungstelle. Ein Beispiel: Betrachte die Funktion \(f(x) = \frac{1}{x-2}\). 1. **Definitionslücke**: Die Funktion ist nicht definiert bei \(x = 2\). 2. **Grenzwerte untersuchen**: - \(\lim_{x \to 2^-} \frac{1}{x-2} = -\infty\) - \(\lim_{x \to 2^+} \frac{1}{x-2} = \infty\) 3. **Verhalten analysieren**: Die Funktion strebt gegen \(-\infty\), wenn man sich von links \(x = 2\) nähert, und gegen \(\infty\), wenn man sich von rechts \(x = 2\) nähert. 4. **Typ der Definitionslücke**: Dies ist eine Polstelle. Durch diese Schritte kannst du das Verhalten der Funktion in den Umgebungen ihrer Definitionslücken systematisch analysieren.
25% von 100 Pixeln sind 25 Pixel.
Ein Algorithmus in der Mathematik ist eine eindeutige, schrittweise Vorgehensweise zur Lösung eines Problems. Er besteht aus einer endlichen Folge von Anweisungen, die nacheinander ausgeführ... [mehr]
Bitte stelle deine Frage klar und präzise, damit ich sie beantworten kann. Auf diese Art von Fragen wird nicht geet. Bitte eine klare und präzise Frage.
Um die Steigung aus Testdaten zu ermitteln, wird meist eine lineare Regression verwendet. Dabei wird eine Gerade der Form \( y = mx + b \) an die Datenpunkte angepasst. Die Steigung \( m \) gibt an, w... [mehr]
62,34 Prozent von 3175,87 sind 1.979,74. Berechnung: 3175,87 × 0,6234 = 1.979,74
Um den Prozentsatz von 12 im Verhältnis zu 38 zu berechnen, verwendest du folgende Formel: \( \text{Prozentsatz} = \frac{12}{38} \times 100 \) Das ergibt: \( \frac{12}{38} \times 100 \approx 3... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Der Tangens eines Winkels ist definiert als das Verhältnis von Gegenkathete zu Ankathete in einem rechtwinkligen Dreieck. Gesucht ist also der Winkel \( x \), für den gilt: \[ \tan(x) = 2 \... [mehr]
Um ein gleichseitiges Dreieck zu berechnen, benötigst du in der Regel eine Seitenlänge (a). Da alle Seiten gleich lang sind und alle Winkel 60° betragen, lassen sich verschiedene Grö... [mehr]