Um die Gleichung zu lösen, schauen wir uns den Ausdruck an: \(-5 \times \frac{1}{2} = \frac{1}{8}\) Lücke. Zuerst berechnen wir \(-5 \times \frac{1}{2}\): \[ -5 \times \frac{1}{2} =\frac{5... [mehr]
Die Aussage ist nicht immer korrekt. Der kleinste gemeinsame Nenner (kgV) zweier Brüche ist der kleinste Nenner, der beide Nenner ohne Rest teilt. In vielen Fällen ist es jedoch so, dass die Multiplikation der beiden Nenner den kleinsten gemeinsamen Nenner ergibt, insbesondere wenn die Nenner teilerfremd sind. Wenn die Nenner jedoch gemeinsame Faktoren haben, ist der kgV kleiner als das Produkt der Nenner. Um den kleinsten gemeinsamen Nenner zu finden, sollte man die Nenner faktorisieren und den höchsten Exponenten jedes Faktors berücksichtigen.
Um die Gleichung zu lösen, schauen wir uns den Ausdruck an: \(-5 \times \frac{1}{2} = \frac{1}{8}\) Lücke. Zuerst berechnen wir \(-5 \times \frac{1}{2}\): \[ -5 \times \frac{1}{2} =\frac{5... [mehr]
Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]
Um den Ausdruck \((5y-1)(5y+1)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ a^2 - b^2 = (a-b)(a+b) \] In diesem Fall ist \(a = 5y\) und \(... [mehr]
Um den Ausdruck \((3x+2)(3x-2)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die besagt, dass \((a+b)(a-b) = a^2 - b^2\). Hier ist \(a = 3x\) und \(b = 2\).... [mehr]
1/2 mal fünf ergibt 2,5.
Um die Brüche 5/18 und 1/18 zu addieren, addierst du die Zähler und behältst den Nenner bei: 5/18 + 1/18 = (5 + 1) / 18 = 6/18. kannst du den Bruch 6/18 kürzen. Der grö&szl... [mehr]
Um den Ausdruck \((5-a) \cdot (12a-5b)\) zu multiplizieren, verwenden wir die distributive Eigenschaft (auch bekannt als das Ausmultiplizieren). 1. Multipliziere \(5\) mit beiden Termen in der zweit... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]
8 ⋅ (–1,9) = –15,2.
3 ⋅ (–1,6) = –4,8.