Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
Um den Wert von α im Intervall [0°; 90°] zu bestimmen, für den gilt sin(170°) = sin(α), nutzen wir die Eigenschaften der Sinusfunktion. Da der Sinus eine periodische Funktion ist und im Bereich von 0° bis 180° symmetrisch ist, gilt: sin(θ) = sin(180° - θ) Für θ = 170° ergibt sich: sin(170°) = sin(180° - 170°) = sin(10°) Somit ist sin(170°) = sin(10°). Da α im Intervall [0°; 90°] liegen muss, ist die Lösung: α = 10°.
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
Um ein Dreieck zu lösen, also alle Seiten und Winkel zu bestimmen, benötigt man in der Regel mindestens drei Angaben, wobei mindestens eine davon eine Seite sein muss. Deine Frage bezieht si... [mehr]
Wenn für einen Winkel \(\alpha\) gilt, dass \(\sin(\alpha) > 0\) und \(\cos(\alpha) < 0\), dann befindet sich \(\alpha\) im **zweiten Quadranten** des Einheitskreises. **Begründung:**... [mehr]
Ja, bei einem Quadrat sind alle Winkel gleich groß. Jeder Winkel misst 90 Grad.
In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]