10 Prozent von 8,83 sind 0,883.
Um den Scheitelpunkt der Funktion \( F(x) = x^2 - 4x + 2 \) zu berechnen, kannst du die Scheitelpunktform der Parabel verwenden. Der Scheitelpunkt einer Parabel in der Form \( ax^2 + bx + c \) kann mit der Formel \( x_s = -\frac{b}{2a} \) gefunden werden. 1. Identifiziere die Koeffizienten: - \( a = 1 \) - \( b = -4 \) - \( c = 2 \) 2. Berechne \( x_s \): \[ x_s = -\frac{-4}{2 \cdot 1} = \frac{4}{2} = 2 \] 3. Setze \( x_s \) in die Funktion ein, um den y-Wert des Scheitelpunkts zu finden: \[ F(2) = 2^2 - 4 \cdot 2 + 2 = 4 - 8 + 2 = -2 \] Der Scheitelpunkt der Funktion \( F(x) = x^2 - 4x + 2 \) ist also \( (2, -2) \).
10 Prozent von 8,83 sind 0,883.
Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]
Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.
Hier sind die Lösungen und die Rechenausdrücke ohne Klammern: 1. **17 - (25 - 18)** - Zuerst mit Klammern: 25 - 18 = 7, dann 17 - 7 = **10** - Ohne Klammern: **17 - 25 - 18** - Rec... [mehr]
Um den Prozentsatz zu berechnen, teilst du 2400 durch 41575 und multiplizierst das Ergebnis mit 100: \( \frac{2400}{41575} \times 100 = 5,77 \% \) (gerundet auf zwei Nachkommastellen). 2400 sind als... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Um den Prozentsatz zu berechnen, teilst du die Zahl 8912 durch 38711 und multiplizierst das Ergebnis mit 100: \[ \text{Prozentsatz} = \left(\frac{8912}{38711}\right) \times 100 \] Rechnung: \[ \fra... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Um die prozentuale Zunahme von 16 auf 19 zu berechnen, verwendest du folgende Formel: \[ \text{Prozentuale Zunahme} = \frac{\text{Neuer Wert} - \text{Alter Wert}}{\text{Alter Wert \times 100 \] Setz... [mehr]
Gegeben ist das Produkt 420 und der erste Faktor 6. Gesucht ist der zweite Faktor. Rechnung: \( 6 \times ? = 420 \) Um den zweiten Faktor zu berechnen, teilst du das Produkt durch den ersten Faktor:... [mehr]