Wie sieht die quadratische Gleichung x^2 + px + q = 0 mit der Lösungsmenge 15 aus?

Antwort

Um eine quadratische Gleichung der Form \(x^2 + px q = 0\) zu erstellen, deren Lösungsmenge 15 ist, müssen wir zunächst verstehen, dass die Lösungsmenge 15 bedeutet, dass 15 eine der Lösungen der Gleichung ist. Wenn 15 eine Lösung ist, können wir die Gleichung in der Form \( (x - 15)(x - r) = 0 \) schreiben, wobei \(r\) die zweite Lösung ist. Daraus ergibt sich: \[ x^2 - (15 + r)x + (15r) = 0 \] Hierbei ist \(p = -(15 + r)\) und \(q = 15r\). Um die spezifischen Werte für \(p\) und \(q\) zu bestimmen, benötigst du einen Wert für \(r\). Wenn du zum Beispiel \(r = 0\) wählst, erhältst du: \[ p = -15 \quad \text{und} \quad q = 0 \] Die quadratische Gleichung wäre dann: \[ x^2 - 15x = 0 \] Wenn du einen anderen Wert für \(r\) wählst, ändert sich entsprechend \(p\) und \(q\).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Was ist die Diskriminante für ax² + bx + c?

Die Diskriminante \( D \) einer quadratischen Gleichung der Form \( ax^2 + bx + c = 0 \) wird mit der Formel \( D = b^2 - 4ac \) berechnet. Die Diskriminante gibt Auskunft über die Anzahl und A... [mehr]

Diskriminante für x^2 + ax + b?

Die Diskriminante einer quadratischen Gleichung der Form \(x^2 + ax + b = 0\) wird mit der Formel \(D = a^2 - 4b\) berechnet. Hierbei ist \(D\) die Diskriminante, \(a\) der Koeffizient von \(x\) und \... [mehr]

Wie löse ich die Gleichung 1a :(2^(-1/2) * a + 1^(-1/2)) nach a auf?

Um den Ausdruck \( 1a : (2^{-1/2} \cdot a + 1^{-1/2}) \) nach \( a \) aufzulösen, muss zunächst klar sein, was genau gemeint ist. Ich gehe davon aus, dass du die Gleichung \[ \frac{a}{2^{-1... [mehr]

Wie führt man Äquivalenzumformungen durch?

Äquivalenzumformungen sind Umformungen von Gleichungen oder Ungleichungen, bei denen die Lösungsmenge erhalten bleibt. Das Ziel ist, die Gleichung so umzuformen, dass sie leichter zu lö... [mehr]

Löse die Gleichung 3x + 7 - 5x - 1 = 0 mit Äquivalenzumformungen und rechne die Probe.

Die Gleichung lautet: \( 3x + 7 - 5x - 1 = 0 \) **1. Äquivalenzumformungen:** Zuerst gleichartige Terme zusammenfassen: \( 3x - 5x + 7 - 1 = 0 \) \( -2x + 6 = 0 \) Nun die Gleichung nach... [mehr]

Was ist eine Äquivalenzumformung?

Eine Äquivalenzumformung ist eine Umformung einer mathematischen Gleichung oder Aussage, bei der die Lösungsmenge unverändert bleibt. Das bedeutet, dass die ursprüngliche Gleichung... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Binomische Formeln?

Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]

(0,75a + 0,5)²?

Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]