Wie ermittelst du die maximale Anzahl der Nullstellen bei einer linearen Funktion oder Parabel?

Antwort

Bei einer linearen Funktion der Form \( f(x) = mx + b \) gibt es maximal eine Nullstelle. Diese Nullstelle liegt dort, wo \( f(x) = 0 \), also bei \( x = -\frac{b}{m} \), vorausgesetzt \( m \neq 0 \). Bei einer Parabel, also einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \), gibt es maximal zwei Nullstellen. Die Anzahl der Nullstellen hängt von der Diskriminante \( \Delta = b^2 - 4ac \) ab: - Wenn \( \Delta > 0 \), gibt es zwei verschiedene Nullstellen. - Wenn \( \Delta = 0 \), gibt es eine doppelte Nullstelle. - Wenn \( \Delta < 0 \), gibt es keine reellen Nullstellen. Die Diskriminante ist also die entscheidende Angabe, um die maximale Anzahl der Nullstellen einer Parabel zu ermitteln.

KI fragen

Verwandte Fragen

Warum ist ein exaktes Winkeldritteln mit Hilfe der Parabel y = x^2 für beliebige Winkel möglich, obwohl es als unmöglich bewiesen ist?

Das exakte Winkeldritteln ist mit Zirkel und Lineal für beliebige Winkel **unmöglich** – das wurde 1837 von Pierre Wantzel bewiesen. Der Beweis bezieht sich aber **ausschließlich... [mehr]

Was ist die Nullstelle einer Normalparabel und wie berechnet man sie?

Die Nullstelle einer Normalparabel ist der Punkt (bzw. die Punkte), an dem die Parabel die x-Achse schneidet. Mathematisch bedeutet das: Die Nullstelle ist der Wert von \( x \), für den \( f(x) =... [mehr]

Was ist die Riemannsche Vermutung?

Die Riemannsche Vermutung ist eines der berühmtesten und wichtigsten ungelösten Probleme der Mathematik. Sie wurde 1859 von dem deutschen Mathematiker Bernhard Riemann formuliert und besch&a... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]