Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die ganzzahligen Lösungen der Gleichung \(x^2 + y^2 + z^2 = 5\) zu finden, betrachten wir die möglichen Werte für \(x\), \(y\) und \(z\). Da \(x^2\), \(y^2\) und \(z^2\) nicht negativ sind, können die Werte von \(x\), \(y\) und \(z\) nur in einem bestimmten Bereich liegen. Die möglichen Werte für \(x^2\), \(y^2\) und \(z^2\) sind 0, 1, 4, da \(5\) die Summe ist und die Quadrate größer als 5 nicht sein können. Wir untersuchen die Kombinationen: 1. **Fall 1:** \(x^2 = 5\), \(y^2 = 0\), \(z^2 = 0\) - Lösungen: \((\pm\sqrt{5}, 0, 0)\) – keine ganzzahligen Lösungen. 2. **Fall 2:** \(x^2 = 4\), \(y^2 = 1\), \(z^2 = 0\) - Lösungen: \((\pm 2, \pm 1, 0)\) - Kombinationen: \((2, 1, 0)\), \((2, -1, 0)\), \((-2, 1, 0)\), \((-2, -1, 0)\) - Permutationen: \(4\) (für \(x\) und \(y\) kann man \(0\) an die dritte Position setzen, was \(3!\) Permutationen ergibt, aber \(0\) ist nicht variabel). 3. **Fall 3:** \(x^2 = 1\), \(y^2 = 1\), \(z^2 = 3\) - Lösungen: \((\pm 1, \pm 1, \pm 1)\) – keine ganzzahligen Lösungen. 4. **Fall 4:** \(x^2 = 1\), \(y^2 = 4\), \(z^2 = 0\) - Lösungen: \((\pm 1, \pm 2, 0)\) - Kombinationen: \((1, 2, 0)\), \((1, -2, 0)\), \((-1, 2, 0)\), \((-1 -2, 0)\) - Permutationen: \(6\) (da \(1\) und \(2\) variabel sind). 5. **Fall 5:** \(x^2 = 0\), \(y^2 = 0\), \(z^2 = 5\) - Lösungen: \((0, 0, \pm\sqrt{5})\) – keine ganzzahligen Lösungen. Zusammenfassend gibt es die folgenden ganzzahligen Lösungen: - Aus Fall 2: \(4\) Lösungen - Aus Fall 4: \(6\) Lösungen Insgesamt gibt es also \(4 + 6 = 10\) ganzzahlige Lösungen für die Gleichung \(x^2 + y^2 + z^2 = 5\).
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]
Um passende Gleichungen zu Aussagen zu finden, ist es wichtig, den Kontext der Aussagen zu kennen. Hier sind einige allgemeine Beispiele: 1. **Aussage:** "Die Summe von x und 5 ist 12."... [mehr]
Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]
Der größte gemeinsame Teiler (ggT) von 445 und 1000 ist 5.
27.000 geteilt durch 1.100 ergibt 24,545454545... oder gerundet 24,55.
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Um den Punkt P in die Gleichung \( y = ax^2 \) einzusetzen, musst du die x- und y-Koordinaten des Punktes P kennen. Angenommen, der Punkt P hat die Koordinaten \( (x_P, y_P) \). 1. Setze die x-Koordi... [mehr]