Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei Zähler und Nenner ganze Zahlen sind und der Nenner nicht null ist. Das bedeutet, jede Zahl der Form \( \frac... [mehr]
Um die ganzzahligen Lösungen der Gleichung \(x^2 + y^2 + z^2 = 5\) zu finden, betrachten wir die möglichen Werte für \(x\), \(y\) und \(z\). Da \(x^2\), \(y^2\) und \(z^2\) nicht negativ sind, können die Werte von \(x\), \(y\) und \(z\) nur in einem bestimmten Bereich liegen. Die möglichen Werte für \(x^2\), \(y^2\) und \(z^2\) sind 0, 1, 4, da \(5\) die Summe ist und die Quadrate größer als 5 nicht sein können. Wir untersuchen die Kombinationen: 1. **Fall 1:** \(x^2 = 5\), \(y^2 = 0\), \(z^2 = 0\) - Lösungen: \((\pm\sqrt{5}, 0, 0)\) – keine ganzzahligen Lösungen. 2. **Fall 2:** \(x^2 = 4\), \(y^2 = 1\), \(z^2 = 0\) - Lösungen: \((\pm 2, \pm 1, 0)\) - Kombinationen: \((2, 1, 0)\), \((2, -1, 0)\), \((-2, 1, 0)\), \((-2, -1, 0)\) - Permutationen: \(4\) (für \(x\) und \(y\) kann man \(0\) an die dritte Position setzen, was \(3!\) Permutationen ergibt, aber \(0\) ist nicht variabel). 3. **Fall 3:** \(x^2 = 1\), \(y^2 = 1\), \(z^2 = 3\) - Lösungen: \((\pm 1, \pm 1, \pm 1)\) – keine ganzzahligen Lösungen. 4. **Fall 4:** \(x^2 = 1\), \(y^2 = 4\), \(z^2 = 0\) - Lösungen: \((\pm 1, \pm 2, 0)\) - Kombinationen: \((1, 2, 0)\), \((1, -2, 0)\), \((-1, 2, 0)\), \((-1 -2, 0)\) - Permutationen: \(6\) (da \(1\) und \(2\) variabel sind). 5. **Fall 5:** \(x^2 = 0\), \(y^2 = 0\), \(z^2 = 5\) - Lösungen: \((0, 0, \pm\sqrt{5})\) – keine ganzzahligen Lösungen. Zusammenfassend gibt es die folgenden ganzzahligen Lösungen: - Aus Fall 2: \(4\) Lösungen - Aus Fall 4: \(6\) Lösungen Insgesamt gibt es also \(4 + 6 = 10\) ganzzahlige Lösungen für die Gleichung \(x^2 + y^2 + z^2 = 5\).
Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei Zähler und Nenner ganze Zahlen sind und der Nenner nicht null ist. Das bedeutet, jede Zahl der Form \( \frac... [mehr]
997 auf die nächste Zehnerstelle gerundet ergibt 1.000.
255 auf die nächste 10 gerundet ergibt 260.
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Ziffern sind tatsächlich Symbole, die zur Darstellung von Zahlen verwendet werden. Sie sind die „Bausteine“ unseres Zahlensystems. Zum Beispiel stehen im Dezimalsystem die Ziffern 0 b... [mehr]
1 Milliarde hat 9 Nullen. Sie wird so geschrieben: 1.000.000.000
1+1 ergibt 2.
Die Quadratzahl, die zwischen 101 und 131 liegt, ist **121**. Denn 11 × 11 = 121.
Der korrekte mathematische Ausdruck wäre nicht „eine Gleichung in ein unbestimmtes Integral transferieren“. Stattdessen spricht man davon, eine Funktion zu **integrieren** oder das **... [mehr]
Dreiviertel von 22 ist 16,5. Berechnung: 22 × ¾ = 16,5