Um den Ausdruck \((r^2 \sin(x) \cos(y) \sin(y)) \cdot (r^2 \cos(x) \cos^2(y))\) zu berechnen, multipliziere die beiden Terme aus: 1. Multipliziere die \(r^2\)-Terme: \(r^2 \cdot r^2 = r^4\) 2. Mu...
Um die x-Werte zu bestimmen, für die die Funktionswerte von f und g gleich groß sind, setzt man die beiden Funktionen gleich: \[ f(x) = g(x) \] Das ergibt die Gleichung: \[ x^4 = x^3 \] Um diese Gleichung zu lösen, bringe alle Terme auf eine Seite: \[ x^4 - x^3 = 0 \] Faktorisieren wir den Ausdruck: \[ x^3(x - 1) = 0 \] Jetzt setzen wir jeden Faktor gleich null: 1. \( x^3 = 0 \) → \( x = 0 \) 2. \( x - 1 = 0 \) → \( x = 1 \) Die Lösungen sind also: \[ x = 0 \quad \text{und} \quad x = 1 \] Die x-Werte, für die die Funktionswerte von f und g gleich groß sind, sind \( x = 0 \) und \( x = 1 \).
Um den Ausdruck \((r^2 \sin(x) \cos(y) \sin(y)) \cdot (r^2 \cos(x) \cos^2(y))\) zu berechnen, multipliziere die beiden Terme aus: 1. Multipliziere die \(r^2\)-Terme: \(r^2 \cdot r^2 = r^4\) 2. Mu...
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut...
Der korrekte mathematische Ausdruck wäre nicht „eine Gleichung in ein unbestimmtes Integral transferieren“. Stattdessen spricht man davon, eine Funktion zu **integrieren** oder das **...
Die Gleichung „ein halb mal X gleich 50“ kannst du mathematisch so aufschreiben: \[\frac{1}{2} \cdot x = 50\] Das ist die gesuchte Gleichung.
Um herauszufinden, wie viel Prozent 24 von 38,5 sind, kannst du folgende Rechnung machen: \[ \text{Prozent} = \frac{24}{38,5} \times 100 \] \[ \text{Prozent} = \frac{24}{38,5} \times 100 \approx 62,...
Die Produktregel ist eine wichtige Ableitungsregel in der Differentialrechnung. Sie wird verwendet, wenn du die Ableitung eines Produkts zweier Funktionen berechnen möchtest. Angenommen, du hast...
Um von der Gleichung \( 8 = \frac{1}{3^x} \) auf \( x^3 = \frac{1}{8} \) zu kommen, musst du die Gleichung so umformen, dass \( x \) isoliert wird und dann beide Seiten umstellen. Hier ist der Rechenw...
Um den Prozentsatz zu berechnen, teilst du 750 durch 12.945 und multiplizierst das Ergebnis mit 100: \( \frac{750}{12.945} \times 100 = 5,79 \% \) 750 sind also etwa **5,79 %** von 12.945.