Wie lautet die Funktionsgleichung einer Parabel, die um 5 Einheiten nach oben und 3 Einheiten nach links verschoben und um den Faktor 4 gestreckt ist?

Antwort

Um die Funktionsgleichung einer Parabel aufzustellen, die um 5 Einheiten nach oben und 3 Einheiten nach links verschoben sowie um den Faktor 4 gestreckt ist, kannst du mit der allgemeinen Form der Parabel beginnen: Die Standardform einer Parabel ist \( f(x) = ax^2 \). 1. **Streckung um den Faktor 4**: Das bedeutet, dass der Wert von \( a \) gleich 4 ist. Also wird die Funktion zu \( f(x) = 4x^2 \). 2. **Verschiebung um 3 Einheiten nach links**: Um eine Parabel nach links zu verschieben, ersetzt man \( x \) durch \( (x + 3) \). Die Funktion wird also zu \( f(x) = 4(x + 3)^2 \). 3. **Verschiebung um 5 Einheiten nach oben**: Um die Parabel nach oben zu verschieben, addierst du 5 zur gesamten Funktion. Die endgültige Funktion lautet also: \[ f(x) = 4(x + 3)^2 + 5 \] Das ist die Funktionsgleichung der verschobenen und gestreckten Parabel.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Welche Länge hat ein Rechteck bei zentrischer Streckung mit k=3,5, Flächeninhalt 400 dm² und Umfang 82 dm?

Bei einer zentrischen Streckung wird die Fläche und der Umfang eines geometrischen Körpers durch den Streckfaktor k beeinflusst. 1. **Flächeninhalt nach der Streckung**: Der neue F... [mehr]

Wie setzt man den Punkt P(1/3) in die Gleichung y = ax²?

Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]

Wie erkennt man den Funktionsterm einer Parabel am Graphen?

Um den Funktionsterm einer Parabel anhand ihres Graphen zu erkennen, kannst du folgende Schritte befolgen: 1. **Scheitelpunkt bestimmen**: Finde den Scheitelpunkt der Parabel. Dieser Punkt ist entwed... [mehr]

Wie sieht der Graph der Stammfunktion einer nach oben geöffneten Parabel aus?

Der Graph der Stammfunktion einer nach oben hin geöffneten Parabel hat die Form einer kubischen Funktion. Eine nach oben hin geöffnete Parabel kann allgemein durch die Funktion \( f(x) = ax^... [mehr]

Scheitelpunktform berechnen?

Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]