Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Um die Differentialgleichung \( y''' + 2y'' + y' = 0 \) zu lösen, gehen wir schrittweise vor. Diese Gleichung ist eine lineare homogene Differentialgleichung dritter Ordnung mit konstanten Koeffizienten. 1. **Charakteristische Gleichung aufstellen:** Die charakteristische Gleichung für die Differentialgleichung \( y''' + 2y'' + y' = 0 \) lautet: \[ r^3 + 2r^2 + r = 0 \] 2. **Lösen der charakteristischen Gleichung:** Faktorisieren wir die charakteristische Gleichung: \[ r(r^2 + 2r + 1) = 0 \] Weiter faktorisieren: \[ r(r + 1)^2 = 0 \] Die Lösungen der charakteristischen Gleichung sind: \[ r = 0, \quad r = -1 \quad (\text{doppelte Wurzel}) \] 3. **Allgemeine Lösung der Differentialgleichung:** Da wir eine einfache Wurzel \( r = 0 \) und eine doppelte Wurzel \( r = -1 \) haben, ist die allgemeine Lösung der Differentialgleichung: \[ y(t) = C_1 e^{0t} + C_2 e^{-t} + C_3 t e^{-t} \] Da \( e^{0t} = 1 \), vereinfacht sich die Lösung zu: \[ y(t) = C_1 + C_2 e^{-t} + C_3 t e^{-t} \] Hier sind \( C_1 \), \( C_2 \) und \( C_3 \) Konstanten, die durch Anfangsbedingungen bestimmt werden können. Zusammengefasst ist die allgemeine Lösung der Differentialgleichung \( y''' + 2y'' + y' = 0 \): \[ y(t) = C_1 + C_2 e^{-t} + C_3 t e^{-t} \]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Nein, die Riemannsche Vermutung ist bislang nicht bewiesen. Sie gehört zu den berühmtesten ungelösten Problemen der Mathematik. Die Vermutung wurde 1859 von Bernhard Riemann formuliert... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Der Überschlag von 74456 bezieht sich auf die Schätzung oder Rundung der Zahl. Wenn du den Überschlag auf die nächste Zehnerstelle machen möchtest, wäre das 74460. Wenn d... [mehr]
Damit die Gleichung \( ax^2 + bx + c = 0 \) genau eine reelle Lösung hat, muss die Diskriminante \( D \) gleich null sein. Die Diskriminante wird durch die Formel \( D = b^2 - 4ac \) berechnet.... [mehr]
-75 : -5 ergibt 15.
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um den Ausdruck \(1, 5x^2 - 1,5x + 2,5x^2\ zu vereinfachen, kannst du die ähnlichen Terme zusammenfassen. Zuerst die \(x^2\) Terme: \[ 1,5x^2 + 2,5x^2 = 4x^2 \] Dann bleibt der gesamte Ausdru... [mehr]