Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Um den Bruch \( \frac{5}{6} \times \frac{11}{55} \) zu berechnen, kannst du die Brüche zunächst multiplizieren und dann das Ergebnis vereinfachen. 1. Multipliziere die Zähler miteinander: \[ 5 \times 11 = 55 \] 2. Multipliziere die Nenner miteinander: \[ 6 \times 55 = 330 \] Das ergibt den Bruch: \[ \frac{55}{330} \] 3. Vereinfache den Bruch, indem du den größten gemeinsamen Teiler (GGT) von 55 und 330 findest. Der GGT von 55 und 330 ist 55. 4. Teile den Zähler und den Nenner durch den GGT: \[ \frac{55 \div 55}{330 \div 55} = \frac{1}{6} \] Das Ergebnis ist: \[ \frac{5}{6} \times \frac{11}{55} = \frac{1}{6} \]
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Um den gesuchten Faktor zu berechnen, teilst du 215 durch 92: 215 ÷ 92 ≈ 2,337 Der Faktor ist also ungefähr **2,337**.
Ein Neuntel ist \(\frac{1}{9} \approx 0{,}111\) und ein Elftel ist \(\frac{1}{11} \approx 0{,}0909\). Zwei verschiedene Brüche, die zwischen diesen Werten liegen, sind zum Beispiel: \[ \frac{1}... [mehr]
\[ (5/7)^{17} \times (7/5)^{19} \] Zuerst kannst du die Potenzen zusammenfassen: \[ = (5/7)^{17} \times (7/5)^{19} = (5/7)^{17} \times (7/5)^{19} \] Das ist das gleiche wie: \[ = (5/7)^{17} \times... [mehr]
Der sechste Teil von 2100 ist 350. Berechnung: 2100 ÷ 6 = 350
Um den 10. Teil von 2100 zu berechnen, teilst du 2100 durch 10: 2100 ÷ 10 = 210 Der 10. Teil von 2100 ist also **210**.
Der 0,6-te Teil von 2100 ist 1260. Berechnung: 2100 × 0,6 = 1260
A) 4 mal 70 ergibt 280. Das Produkt heißt 280. B) 90 mal 3 ergibt 270. Das Produkt ist 270. C) Das Produkt ist 420, der erste Faktor ist 6. Der zweite Faktor ist 420 geteilt durch 6 also 70.
Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]