6/7 ist ein Bruch und bedeutet „sechs Siebtel“. Das heißt, ein Ganzes wurde in sieben gleich große Teile geteilt, und davon werden sechs Teile betrachtet. Mathematisch entspric... [mehr]
Die relative Häufigkeit berechnet sich, indem du die absolute Häufigkeit durch die Gesamtzahl der Beobachtungen teilst. In diesem Fall teilst du 78 durch 320: \[ \text{Relative Häufigkeit} = \frac{78}{320} \] Das ergibt: \[ \text{Relative Häufigkeit} = 0,24375 \] Um dies in Prozent auszudrücken, multiplizierst du das Ergebnis mit 100: \[ 0,24375 \times 100 = 24,375\% \] Die relative Häufigkeit beträgt also 24,375%.
6/7 ist ein Bruch und bedeutet „sechs Siebtel“. Das heißt, ein Ganzes wurde in sieben gleich große Teile geteilt, und davon werden sechs Teile betrachtet. Mathematisch entspric... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Die Zahl 0,009 ist eine Dezimalzahl und entspricht neun Tausendstel. In Bruchschreibweise wäre das: 0,009 = 9/1000 Das bedeutet, dass 0,009 neun Teile von insgesamt tausend Teilen eines Ganzen... [mehr]
Deine Frage ist sehr allgemein formuliert. "50%" kann sich auf viele verschiedene Dinge beziehen, zum Beispiel auf einen Prozentsatz, einen Rabatt, eine Wahrscheinlichkeit oder einen Anteil.... [mehr]
\(\left(\frac{x}{2y}\right)^4 = \frac{x^4}{(2y)^4} = \frac{x^4}{16y^4}\)
Die Zahl 20 kann als Bruch geschrieben werden, indem du sie als Zähler und 1 als Nenner verwendest: \[ 20 = \frac{20}{1} \] Das ist die Darstellung von 20 als Bruch.
Wahrscheinlichkeiten, relative Häufigkeiten und absolute Häufigkeiten sind drei verschiedene Begriffe aus der Statistik, die oft miteinander verwechselt werden. Hier die Unterschiede: **1.... [mehr]
Um 102 durch 17 zu rechnen, teilst du 102 durch 17: 102 ÷ 17 = 6 Das Ergebnis ist 6.