Um den Term \(-3x^2 + 15x\) zu vereinfachen oder zu berechnen, gibt es verschiedene Möglichkeiten – je nachdem, was genau gefragt ist: **1. Ausklammern:** Du kannst den gemeinsamen Faktor... [mehr]
Um den Ausdruck \((2a-5)(3a-6)\) zu multiplizieren, verwendest du die distributive Eigenschaft (auch bekannt als FOIL-Methode für binomische Produkte). 1. Multipliziere die ersten Terme: \(2a \cdot 3a = 6a^2\) 2. Multipliziere die äußeren Terme: \(2a \cdot (-6) = -12a\) 3. Multipliziere die inneren Terme: \(-5 \cdot 3a = -15a\) 4. Multipliziere die letzten Terme: \(-5 \cdot (-6) = 30\) Jetzt addierst du alle Ergebnisse zusammen: \[ 6a^2 - 12a - 15a + 30 = 6a^2 - 27a + 30 \] Der vereinfachte Ausdruck ist also: \[ 6a^2 - 27a + 30 \]
Um den Term \(-3x^2 + 15x\) zu vereinfachen oder zu berechnen, gibt es verschiedene Möglichkeiten – je nachdem, was genau gefragt ist: **1. Ausklammern:** Du kannst den gemeinsamen Faktor... [mehr]
Die Differenz \( x^2 - y^2 \) kann als sogenannte "Differenz zweier Quadrate" geschrieben werden. Sie lässt sich faktorisieren zu: \[ x^2 - y^2 = (x + y)(x - y) \] Das ist eine grundl... [mehr]
\(\left(\frac{x}{2y}\right)^4 = \frac{x^4}{(2y)^4} = \frac{x^4}{16y^4}\)
Der Ausdruck \( (y+1) \cdot (y-1) \) lässt sich mit der binomischen Formel vereinfachen: \[ (y+1) \cdot (y-1) = y^2 - 1 \] Das ist die Differenz zweier Quadrate.
Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]
Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]