Um den Ausdruck \((5y-1)(5y+1)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ a^2 - b^2 = (a-b)(a+b) \] In diesem Fall ist \(a = 5y\) und \(... [mehr]
Der Ausdruck \(20b^2 + 60b + 45\) kann als Produkt von zwei binomischen Ausdrücken faktorisieren werden. Zunächst wird der Ausdruck in eine Form gebracht, die das Faktorisieren erleichtert: 1. Den Ausdruck in der Form \(ax^2 + bx + c\) betrachten, wobei \(a = 20\), \(b = 60\) und \(c = 45\). 2. Den größten gemeinsamen Teiler (GGT) der Koeffizienten bestimmen. In diesem Fall ist der GGT 5. Der Ausdruck kann also wie folgt geschrieben werden: \[20b^2 + 60b + 45 = 5(4b^2 + 12b + 9)\] Nun wird der Ausdruck \(4b^2 + 12b + 9\) faktorisieren: 1. Die Faktoren von \(4b^2\) und \(9\) finden, die zusammen \(12b\) ergeben. 2. \(4b^2\) kann als \((2b)^2\) und \(9\) als \(3^2\) geschrieben werden. Der Ausdruck kann als Quadrat eines Binoms geschrieben werden: \[4b^2 + 12b + 9 = (2b + 3)^2\] Somit ergibt sich: \[20b^2 + 60b + 45 = 5(2b + 3)^2\] Das Produkt ist also: \[5(2b + 3)^2\]
Um den Ausdruck \((5y-1)(5y+1)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ a^2 - b^2 = (a-b)(a+b) \] In diesem Fall ist \(a = 5y\) und \(... [mehr]
Um den Ausdruck \((3x+2)(3x-2)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die besagt, dass \((a+b)(a-b) = a^2 - b^2\). Hier ist \(a = 3x\) und \(b = 2\).... [mehr]
Um den Ausdruck \(36c^2 + 6c\) herauszuheben, kannst du den größten gemeinsamen Faktor (Ggf) bestimmen. In diesem Fall ist der Ggf \(6c\). Du kannst den wie folgt umformen: \[ 36c^2 + 6c... [mehr]
Der Ausdruck \((A^3 - B^3)(A^3 + B^3)\) kann mithilfe der Identität für die Differenz und die Summe von Kuben vereinfacht werden. Zuerst erkennen wir, dass: \[ A^3 - B^3 = (A - B)(A^2 + A... [mehr]
Um den Ausdruck \((4a-5)(4a+5)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ (a-b)(a+b) = a^2 - b^2 \] In diesem Fall ist \(a = 4a\) und \(... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Der Ausdruck \( a^2 - 8y + 16 \) kann als Quadrat eines Binoms geschrieben werden. Er lässt sich umformen zu: \[ a^2 - 8y + 16 = (a - 4)^2 \] Das bedeutet, dass der Ausdruck das Quadrat des Bin... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]