Die Wahrscheinlichkeit, eine bestimmte Person in einer Stadt mit 19.000 Einwohnern zu treffen, beträgt 1 zu 19.000 oder etwa 0,0053 % (1 geteilt durch 19.000 multipliziert mit 100). Das bedeutet,... [mehr]
Das Ziegenproblem, auch bekannt als Monty-Hall-Problem, ist ein bekanntes Wahrscheinlichkeitsrätsel. Es geht so: Ein Kandidat in einer TV-Show muss sich für eines von drei Toren entscheiden. Hinter einem der Tore befindet sich ein Auto (der Hauptgewinn), hinter den anderen beiden Toren jeweils eine Ziege. Nachdem der Kandidat ein Tor gewählt hat, öffnet der Moderator, der weiß, was sich hinter den Toren befindet, eines der beiden anderen Tore, hinter dem sich eine Ziege befindet. Der Kandidat hat dann die Möglichkeit, seine Wahl zu ändern und das andere noch geschlossene Tor zu wählen. Die Frage ist: Sollte der Kandidat bei seiner ursprünglichen Wahl bleiben oder wechseln, um die besten Gewinnchancen zu haben? Die Antwort lautet: Der Kandidat sollte wechseln. Wenn der Kandidat seine Wahl ändert, erhöht sich die Gewinnchance auf 2/3, während sie bei Beibehaltung der ursprünglichen Wahl nur 1/3 beträgt.
Die Wahrscheinlichkeit, eine bestimmte Person in einer Stadt mit 19.000 Einwohnern zu treffen, beträgt 1 zu 19.000 oder etwa 0,0053 % (1 geteilt durch 19.000 multipliziert mit 100). Das bedeutet,... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass die Augenzahl des weißen Würfels um eins größer ist als die des schwarzen Würfels, betrachten wir die möglichen Ergebnisse.... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass beim Wurf von 5 Würfeln alle 5 Würfel unterschiedliche Augenzahlen zeigen, kann man die folgende Überlegung anstellen: 1. **Anzahl der m&ou... [mehr]
Die Wahrscheinlichkeit, eine Eins zu würfeln, bleibt unabhängig von den vorherigen Würfen konstant. Bei einem fairen Würfel gibt es sechs mögliche Ergebnisse (1, 2, 3, 4, 5, 6... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass eine unbekannte Person an einem anderen Tag Geburtstag hat als du, gehen wir von der Annahme aus, dass es 365 Tage im Jahr gibt (ohne Schaltjahre). 1. **W... [mehr]
Beim Würfeln mit einem fairen sechsseitigen Würfel gibt es die Zahlen 1, 2, 3, 4, 5 und 6. Um die Wahrscheinlichkeiten für die Ergebnisse zu bestimmen, die durch 5 oder durch 3 teilbar... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass die Augenzahl des roten Würfels durch 2 teilbar ist, während die des blauen Würfels beliebig sein kann, gehen wir wie folgt vor: 1. **M&oum... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass entweder der blaue Würfel eine 1 zeigt oder der rote Würfel eine 1 zeigt, können wir die Wahrscheinlichkeiten der einzelnen Ereignisse betra... [mehr]
Um die Wahrscheinlichkeit für das Ereignis "Augensumme ist größer als 10" und dessen Gegenereignis "Augensumme ist kleiner oder gleich 10" zu berechnen, betrachten... [mehr]
Die Bedeutung von 1/6 für das Auftreten einer Sechs bei einem einzelnen Wurf eines fairen Würfels ist, dass die Wahrscheinlichkeit, eine Sechs zu würfeln, 1 von 6 möglichen Ergebni... [mehr]