Berechnung der Wellenlänge beim Übergang von n=3 auf n=2 bei Wasserstoff.

Antwort vom

Um die Wellenlänge beim Übergang von n=3 auf n=2 im Wasserstoffatom zu berechnen, kannst du die Rydberg-Formel verwenden: \[ \frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \] Hierbei: - \( R \) die Rydberg-Konstante, die ungefähr \( 1,097 \times 10^7 \, \text{m}^{-1} \) beträgt, - \( n_1 = 2 \) (niedrigerer Energieniveau), - \( n_2 = 3 \) (höherer Energieniveau). Setze die Werte in die Formel ein: \[ \frac{1}{\lambda} = 1,097 \times 10^7 \left( \frac{1}{2^2} - \frac{1}{3^2} \right) \] Berechne die Brüche: \[ \frac{1}{2^2} = \frac{1}{4} = 0,25 \] \[ \frac{1}{3^2} = \frac{1}{9} \approx 0,1111 \] Setze die Werte in die Gleichung ein: \[ \frac{1}{\lambda} = 1,097 \times 10^7 \left( 0,25 - 0,1111 \right) = 1,097 \times 10^7 \times 0,1389 \approx 1,527 \times 10^6 \, \text{m}^{-1} \] Um die Wellenlänge \( \lambda \) zu finden, nimm den Kehrwert: \[ \lambda \approx \frac{1}{1,527 \times 10^6} \approx 6,54 \times 10^{-7} \, \text{m} = 654 \, \text{nm} \] Die Wellenlänge beim Übergang von n=3 auf n=2 im Wasserstoff beträgt also etwa 654 nm.

Neue Frage stellen

Verwandte Fragen

Welche Zustandsvariablen hat Wasserstoff bei verschiedenen Temperaturen und Drücken?

Die Zustandsvariablen von Wasserstoff (H₂) – also Druck (p), Temperatur (T), Volumen (V) und Dichte (ρ) – hängen voneinander ab und werden durch die Zustandsgleichung beschrieben....

Wie erklärt das Modell die Farben im Wasserstoffspektrum?

Die Farben im Spektrum von Wasserstoff werden durch das sogenannte Bohrsche Atommodell erklärt. In diesem Modell bewegen sich die Elektronen auf bestimmten, erlaubten Bahnen (Energieniveaus) um d...

Welche Wellenlänge hat Ultraschall?

Ultraschall bezeichnet Schallwellen mit Frequenzen oberhalb des menschlichen Hörbereichs, also über etwa 20.000 Hertz (20 kHz). Die Wellenlänge von Ultraschall hängt von der Freque...

Warum ist rotes Licht auf Distanz schlechter sichtbar?

Rotes Licht sieht man auf Distanz schlechter, weil das menschliche Auge für rotes Licht weniger empfindlich ist als für grünes oder gelbes Licht. Die Empfindlichkeit des Auges ist am h&...