Wie zeige ich, dass 1² - 2² + 3² - 4² + ... + (-1)^(n-1)n² = (-1)^(n-1) * (1 + 2 + 3 + 4 + ... + n) gilt?

Antwort

Um zu zeigen, dass die Gleichung \[ 1^2 - 2^2 + 3^2 - 4^2 + \ldots + (-1)^{n-1} n^2 = (-1)^{n-1} \left( 1 + + 3 +ldots + nright) \] ilt, können wir die linke Seite der Gleichung umformen und die rechte Seite analysieren. 1. **Linke Seite umformen**: Wir betrachten die Summe in zwei Teile, je nachdem, ob \( n \) gerade oder ungerade ist. - Für ungerade \( n = 2k + 1 \): \[ S = 1^2 - 2^2 + 3^2 - 4^2 + \ldots + (2k+1)^2 \] Dies kann umgeschrieben werden als: \[ S = (1^2 + 3^2 + \ldots + (2k+1)^2) - (2^2 + 4^2 + \ldots + (2k)^2) \] - Für gerade \( n = 2k \): \[ S = 1^2 - 2^2 + 3^2 - 4^2 + \ldots - (2k)^2 \] Dies wird ähnlich umgeformt. 2. **Rechte Seite analysieren**: Die Summe \( 1 + 2 + 3 + \ldots + n \) ist bekanntlich \( \frac{n(n+1)}{2} \). Daher wird die rechte Seite zu: \[ (-1)^{n-1} \cdot \frac{n(n+1)}{2} \] 3. **Induktionsbeweis**: Um die Gleichheit zu beweisen, kann ein Induktionsbeweis verwendet werden. - **Induktionsanfang**: Für \( n = 1 \): \[ 1^2 = (-1)^{1-1} \cdot 1 = 1 \] Dies stimmt. - **Induktionsannahme**: Angenommen, die Gleichung gilt für \( n = k \): \[ 1^2 - 2^2 + \ldots + (-1)^{k-1} k^2 = (-1)^{k-1} \cdot \frac{k(k+1)}{2} \] - **Induktionsschritt**: Zeige, dass die Gleichung auch für \( n = k + 1 \) gilt: \[ S_{k+1} = S_k + (-1)^{k} (k+1)^2 \] Setze die Induktionsannahme ein und vereinfache: \[ S_{k+1} = (-1)^{k-1} \cdot \frac{k(k+1)}{2} + (-1)^{k} (k+1)^2 \] Dies führt zu: \[ S_{k+1} = (-1)^{k-1} \left( \frac{k(k+1)}{2} - (k+1)^2 \right) \] Vereinfachen und umformen zeigt, dass dies der Form der rechten Seite für \( n = k + 1 \) entspricht. Durch diesen Induktionsbeweis kann die Gleichheit für alle natürlichen Zahlen \( n \) gezeigt werden.

Kategorie: Mathematik Tags: Summe Quadrate Beweis
Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Ist die Riemannsche Vermutung bewiesen?

Nein, die Riemannsche Vermutung ist bislang nicht bewiesen. Sie gehört zu den berühmtesten ungelösten Problemen der Mathematik. Die Vermutung wurde 1859 von Bernhard Riemann formuliert... [mehr]

Beweis des Satzes von Vieta

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wur... [mehr]

Einfacher Beweis des Satzes von Vieta.

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wur... [mehr]

Satz von Vieta: Verwendung, Voraussetzungen, Beweis, Herleitung und Beispiel.

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Er ist besonders nützlich in der Algebra, um Informationen über dieur... [mehr]

Die dreifache Summe aus 3x und 4?

Die dreifache Summe aus 3x und 4 wird mathematisch wie folgt ausgedrückt: 3 * (3x + 4) Das bedeutet, du multiplizierst die Summe von 3x und 4 mit 3.

Die Differenz aus 18 und einer Zahl verhält sich zu 30 wie die Summe aus sechs und dieser Zahl zu zwölf. Wie heißt diese Zahl?

Um die gesuchte Zahl zu finden, nennen wir sie \( x \). Die Aussage "die Differenz aus 18 und einer Zahl verhält sich zu 30, wie die Summe aus sechs und dieser Zahl zu zwölf" l&a... [mehr]