Gegeben: - 12 verschiedene Quadrate - Ein 3x4-Raster (also 12 Felder) - Jedes Quadrat kann in 4 Orientierungen (0°, 90°, 180°, 270°) platziert werden - Jedes Quadrat wird genau... [mehr]
Um zu zeigen, dass die Gleichung \[ 1^2 - 2^2 + 3^2 - 4^2 + \ldots + (-1)^{n-1} n^2 = (-1)^{n-1} \left( 1 + + 3 +ldots + nright) \] ilt, können wir die linke Seite der Gleichung umformen und die rechte Seite analysieren. 1. **Linke Seite umformen**: Wir betrachten die Summe in zwei Teile, je nachdem, ob \( n \) gerade oder ungerade ist. - Für ungerade \( n = 2k + 1 \): \[ S = 1^2 - 2^2 + 3^2 - 4^2 + \ldots + (2k+1)^2 \] Dies kann umgeschrieben werden als: \[ S = (1^2 + 3^2 + \ldots + (2k+1)^2) - (2^2 + 4^2 + \ldots + (2k)^2) \] - Für gerade \( n = 2k \): \[ S = 1^2 - 2^2 + 3^2 - 4^2 + \ldots - (2k)^2 \] Dies wird ähnlich umgeformt. 2. **Rechte Seite analysieren**: Die Summe \( 1 + 2 + 3 + \ldots + n \) ist bekanntlich \( \frac{n(n+1)}{2} \). Daher wird die rechte Seite zu: \[ (-1)^{n-1} \cdot \frac{n(n+1)}{2} \] 3. **Induktionsbeweis**: Um die Gleichheit zu beweisen, kann ein Induktionsbeweis verwendet werden. - **Induktionsanfang**: Für \( n = 1 \): \[ 1^2 = (-1)^{1-1} \cdot 1 = 1 \] Dies stimmt. - **Induktionsannahme**: Angenommen, die Gleichung gilt für \( n = k \): \[ 1^2 - 2^2 + \ldots + (-1)^{k-1} k^2 = (-1)^{k-1} \cdot \frac{k(k+1)}{2} \] - **Induktionsschritt**: Zeige, dass die Gleichung auch für \( n = k + 1 \) gilt: \[ S_{k+1} = S_k + (-1)^{k} (k+1)^2 \] Setze die Induktionsannahme ein und vereinfache: \[ S_{k+1} = (-1)^{k-1} \cdot \frac{k(k+1)}{2} + (-1)^{k} (k+1)^2 \] Dies führt zu: \[ S_{k+1} = (-1)^{k-1} \left( \frac{k(k+1)}{2} - (k+1)^2 \right) \] Vereinfachen und umformen zeigt, dass dies der Form der rechten Seite für \( n = k + 1 \) entspricht. Durch diesen Induktionsbeweis kann die Gleichheit für alle natürlichen Zahlen \( n \) gezeigt werden.
Gegeben: - 12 verschiedene Quadrate - Ein 3x4-Raster (also 12 Felder) - Jedes Quadrat kann in 4 Orientierungen (0°, 90°, 180°, 270°) platziert werden - Jedes Quadrat wird genau... [mehr]
Gesucht ist die kleinste Primzahl, die als Summe dreier aufeinanderfolgender Quadratzahlen geschrieben werden kann. Bezeichne die drei aufeinanderfolgenden Zahlen als \( n-1 \), \( n \), \( n+1 \). D... [mehr]
Der Rechenausdruck lautet: (88 - 65) + (25 + 96) Berechnung: 88 - 65 = 23 25 + 96 = 121 Nun addieren: 23 + 121 = 144 Das Ergebnis ist **144**.
Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.
a) Rechenausdruck: 99 – (44 + 33) Berechnung: 99 – (44 + 33) = 99 – 77 = **22** b) Rechenausdruck: 86 + (77 + 33) Berechnung: 86 + (77 + 33) = 86 + 110 = **196**
Die Frage ist, ob man mit der **Summe oder Differenz von Primzahlen** alle Zahlen von **0 bis 255** darstellen kann – und falls ja, mit welchen Primzahlen. ### Analyse - **Primzahlen** sind na... [mehr]