Um den Ausdruck \( 15x - (9x + 7) + (6 - 2x) - (5x + 3) - xy \) zu vereinfachen, folge diesen Schritten: 1. Entferne die Klammern: \[ 15x - 9x - 7 + 6 - 2x - 5x - 3 - xy \] 2. Fasse die \(... [mehr]
Um den Ausdruck \( x + 3 - \frac{x}{3} - \frac{1}{6}x - \frac{1}{2} \) zu vereinfachen, gehen wir Schritt für Schritt vor: 1. Zuerst fassen wir die \( x \)-Terme zusammen: \[ x - \frac{x}{3} - \frac{1}{6}x = \left(1 - \frac{1}{3} - \frac{1}{6}\right)x \] Um die Koeffizienten zu addieren, bringen wir sie auf einen gemeinsamen Nenner. Der gemeinsame Nenner von 1, 3 und 6 ist 6: \[ 1 = \frac{6}{6}, \quad \frac{1}{3} = \frac{2}{6}, \quad \frac{1}{6} = \frac{1}{6} \] Somit ergibt sich: \[ 1 - \frac{1}{3} - \frac{1}{6} = \frac{6}{6} - \frac{2}{6} - \frac{1}{6} = \frac{3}{6} = \frac{1}{2} \] Daher ist: \[ x - \frac{x}{3} - \frac{1}{6}x = \frac{1}{2}x \] 2. Jetzt fassen wir die konstanten Terme zusammen: \[ 3 - \frac{1}{2} = 3 - 0.5 = 2.5 = \frac{5}{2} \] 3. Setzen wir alles zusammen: \[ \frac{1}{2}x + \frac{5}{2} \] Der vereinfachte Ausdruck lautet also: \[ \frac{1}{2}x + \frac{5}{2} \]
Um den Ausdruck \( 15x - (9x + 7) + (6 - 2x) - (5x + 3) - xy \) zu vereinfachen, folge diesen Schritten: 1. Entferne die Klammern: \[ 15x - 9x - 7 + 6 - 2x - 5x - 3 - xy \] 2. Fasse die \(... [mehr]
Um den Ausdruck \( 15 \times -(9x + 7) + (6 - 2x) \cdot (5x + 3) - xy \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. **Erster Teil**: \( 15 \times -(9x + 7) \) \[ = -15 \times 9... [mehr]
Um den Ausdruck \( a(a+b) - (a^2+b)(a-b) \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. Zuerst multiplizieren wir die Terme aus: \[ a(a+b) = a^2 + ab \] \[ (a^2 + b)(a... [mehr]
Die Gleichung \(5y^2 - xy\) kann nicht weiter vereinfacht werden, da sie bereits in einer faktorisierbaren Form vorliegt. Du kannst sie jedoch umformen oder faktorisieren, wenn du nach bestimmten Wert... [mehr]
Die Gleichung \(3x \cdot x\) kann vereinfacht werden zu \(3x^2\).
Um den Ausdruck \((9ab^2 - 6a^2b):3ab\) durch Faktorisieren zu lösen, gehen wir wie folgt vor: 1. **Faktorisieren des Zählers**: Der Ausdruck \(9ab^2 - 6a^2b\) kann faktorisieren werden... [mehr]
Um die Gleichung \(3x + 8 + 6x - 3 = 32\) zu lösen, folge diesen Schritten: 1. Fasse die \(x\)-Terme und die konstanten Terme zusammen: \[ (3x + 6x) + (8 - 3) = 32 \] Das vereinfacht... [mehr]
Um die Probe für \( a = 2 \) in den Ausdruck \( (3a^2 + 4a^2)(-2a - a^5) \) durchzuführen, folge diesen Schritten: 1. Setze \( a = 2 \) in den Ausdruck ein: \[ (3(2)^2 + 4(2)^2)(-2(2)... [mehr]
Um den Ausdruck \((-2+x)^2\) zu vereinfachen, kannst du die binomische Formel anwenden. Die Formel für das Quadrat eines Binoms lautet: \[ (a + b)^2 = a^2 + 2ab + b^2 \] In deinem Fall ist \(a... [mehr]
Um den Ausdruck \(7a^2 - a^2b\ zu vereinfachen, kannst du \(a^2\) als gemeinsamen Faktor herausziehen: \[ 7a^2 - a^2b = a^2(7 - b) \] Das ist die vereinfachte Form des Ausdrucks.