Wie rechne ich Winkelangaben in Quaternion xyz in Grad um?

Antwort

Um Winkelangaben in Quaternionen (x, y, z, w) in Grad umzurechnen, musst du die Quaternionen zunächst in Euler-Winkel umwandeln. Hier ist eine allgemeine Methode, um dies zu tun: 1. **Quaternion in Euler-Winkel umwandeln:** Angenommen, du hast einen Quaternion \( q = (x, y, z, w) \). Die Euler-Winkel (Roll, Pitch, Yaw) können wie folgt berechnet werden: - **Roll (X-Achse-Rotation):** \[ \text{Roll} = \text{atan2}(2(yz + wx), 1 - 2(x^2 + y^2)) \] - **Pitch (Y-Achse-Rotation):** \[ \text{Pitch} = \text{asin}(2(xz - wy)) \] - **Yaw (Z-Achse-Rotation):** \[ \text{Yaw} = \text{atan2}(2(xy + wz), 1 - 2(y^2 + z^2)) \] 2. **Umwandlung in Grad:** Die resultierenden Winkel sind in Radiant. Um sie in Grad umzurechnen, multipliziere jeden Winkel mit \(\frac{180}{\pi}\). \[ \text{Roll (in Grad)} = \text{Roll (in Radiant)} \times \frac{180}{\pi} \] \[ \text{Pitch (in Grad)} = \text{Pitch (in Radiant)} \times \frac{180}{\pi} \] \[ \text{Yaw (in Grad)} = \text{Yaw (in Radiant)} \times \frac{180}{\pi} \] Hier ist ein Beispiel in Python, um dies zu verdeutlichen: ```python import math def quaternion_to_euler(x, y, z, w): # Roll (x-axis rotation) sinr_cosp = 2 * (w * x + y * z) cosr_cosp = 1 - 2 * (x * x + y * y) roll = math.atan2(sinr_cosp, cosr_cosp) # Pitch (y-axis rotation) sinp = 2 * (w * y - z * x) if abs(sinp) >= 1: pitch = math.copysign(math.pi / 2, sinp) # use 90 degrees if out of range else: pitch = math.asin(sinp) # Yaw (z-axis rotation) siny_cosp = 2 * (w * z + x * y) cosy_cosp = 1 - 2 * (y * y + z * z) yaw = math.atan2(siny_cosp, cosy_cosp) # Convert radians to degrees roll = math.degrees(roll) pitch = math.degrees(pitch) yaw = math.degrees(yaw) return roll, pitch, yaw # Beispiel-Quaternion x, y, z, w = 0.0, 0.0, 0.0, 1.0 roll, pitch, yaw = quaternion_to_euler(x, y, z, w) print(f"Roll: {roll}, Pitch: {pitch}, Yaw: {yaw}") ``` Diese Methode konvertiert Quaternionen in Euler-Winkel und gibt sie in Grad zurück.

KI fragen

Verwandte Fragen

Wie berechnet man die Winkelneigung bei 1 mm Gegenkathete und 40 mm Ankathete?

Um die Winkelneigung (den Winkel α) zu berechnen, wenn die Gegenkathete 1 mm und die Ankathete 40 mm beträgt, verwendest du die Tangens-Funktion: \[ \tan(\alpha) = \frac{\text{Gegenkathete... [mehr]

Wie groß ist der Winkel, dessen Tangens 2 ergibt?

Der Tangens eines Winkels ist definiert als das Verhältnis von Gegenkathete zu Ankathete in einem rechtwinkligen Dreieck. Gesucht ist also der Winkel \( x \), für den gilt: \[ \tan(x) = 2 \... [mehr]

Wie kann ich aus Entfernung und Höhe den Winkel berechnen?

Um den Winkel zu berechnen, wenn du die Entfernung (Grundlinie) und die Höhe (Gegenkathete) hast, kannst du die folgende Formel aus der Trigonometrie verwenden: **tan(α) = Höhe / Entf... [mehr]

Wie berechnet man den Schnittwinkel zwischen der Ebene 2x1 + x2 = 4 und der x1-x3-Ebene?

Um den Winkel zwischen der Ebene \( F: 2x_1 + x_2 = 4 \) und der \( x_1x_3 \)-Ebene zu berechnen, gehst du wie folgt vor: **1. Bestimme die Normalenvektoren:** - Die Ebene \( F \) hat die Gleichung... [mehr]