Wieviele Boolesche Funktionen f : Bn → B existieren?

Antwort

Die Anzahl der Booleschen Funktionen \( f : B^n \to B \) beträgt \( 2^{2^n} \). Hierbei ist \( B^n \) die Menge aller n-Tupel von Wahrheitswerten (0 und 1), also die Menge der möglichen Eingaben für die Funktion. Da es \( 2^n \) mögliche Eingaben gibt (jede Eingabe kann entweder 0 oder 1 sein), gibt es für jede dieser Eingaben zwei mögliche Ausgaben (0 oder 1). Daher ergibt sich die Gesamtanzahl der Booleschen Funktionen aus der Anzahl der möglichen Ausgaben für jede Eingabe, was zu \( 2^{2^n} \) führt.

KI fragen

Verwandte Fragen

Auf wie viele Arten können 4 Buben auf 1 Spieler verteilt werden?

Die 4 Buben können auf **1 Spieler** nur auf **eine einzige Art** verteilt werden: Alle 4 Buben gehen an diesen einen Spieler. **Begründung:** Da es nur einen Spieler gibt, bekommt dieser... [mehr]

Was bedeutet Berücksichtigung der Reihenfolge in der Kombinatorik?

In der Kombinatorik bedeutet „mit Berücksichtigung der Reihenfolge“, dass die Anordnung der ausgewählten Elemente eine Rolle spielt. Das heißt: Verschiedene Reihenfolgen de... [mehr]

Was ist die Produktregel?

Die Produktregel ist eine wichtige Ableitungsregel in der Differentialrechnung. Sie wird verwendet, wenn du die Ableitung eines Produkts zweier Funktionen berechnen möchtest. Angenommen, du hast... [mehr]

-cos(x) abgeleitet?

Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]

Auf wie viele Arten können 6 CDs im Regal angeordnet werden?

Die 6 CDs können auf **720 verschiedene Arten** im Regal angeordnet werden. Das ergibt sich aus der Anzahl der Permutationen von 6 verschiedenen Objekten, also \( 6! \) (6 Fakultät): \( 6!... [mehr]

Was ist eine spannende Idee zur Einführung in Funktionen?

Eine spannende Idee für das Thema „Einführung in Funktionen“ ist, das Konzept anhand einer Alltagssituation zu erklären, zum Beispiel mit einem „Getränkeautomaten... [mehr]