Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei der Zähler und der Nenner ganze Zahlen sind und der Nenner nicht null ist. Das heißt, jede Zahl der Fo... [mehr]
Die Menge der rationalen Zahlen \(\mathbb{Q}\) ist in der Standardtopologie der reellen Zahlen \(\mathbb{R}\) nicht abgeschlossen, weil es in \(\mathbb{R}\) irrationale Zahlen gibt, die Grenzwerte von Folgen rationaler Zahlen sein können. Ein Beispiel ist die Folge \(a_n = \frac{1}{n}\), die gegen 0 konvergiert. Der Grenzwert 0 ist eine reelle Zahl, die in \(\mathbb{Q}\) enthalten ist, aber wenn wir eine Folge von rationalen Zahlen betrachten, die gegen eine irrationale Zahl wie \(\sqrt{2}\) konvergiert, wird der Grenzwert nicht in \(\mathbb{Q}\) liegen. Da es also Grenzwerte gibt, die nicht in der Menge der rationalen Zahlen enthalten sind, ist \(\mathbb{Q}\) nicht abgeschlossen in \(\mathbb{R}\). Eine Menge ist genau dann abgeschlossen, wenn sie alle ihre Grenzwerte enthält.
Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei der Zähler und der Nenner ganze Zahlen sind und der Nenner nicht null ist. Das heißt, jede Zahl der Fo... [mehr]
997 auf die nächste Zehnerstelle gerundet ergibt 1.000.
255 auf die nächste 10 gerundet ergibt 260.
Um zu bestimmen, ob das Ergebnis einer Rechnung mit rationalen Zahlen (also Zahlen, die als Bruch dargestellt werden können, einschließlich negativer Zahlen) positiv oder negativ ist, gibt... [mehr]
Ziffern sind tatsächlich Symbole, die zur Darstellung von Zahlen verwendet werden. Sie sind die „Bausteine“ unseres Zahlensystems. Zum Beispiel stehen im Dezimalsystem die Ziffern 0 b... [mehr]
1 Milliarde hat 9 Nullen. Sie wird so geschrieben: 1.000.000.000
1+1 ergibt 2.
Die Quadratzahl, die zwischen 101 und 131 liegt, ist **121**. Denn 11 × 11 = 121.
Dreiviertel von 22 ist 16,5. Berechnung: 22 × ¾ = 16,5
84 + 18 = 102