Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]
Die zweite binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Um diese Formel auszurechnen, folge diesen Schritten: 1. **Quadrat des ersten Terms**: Berechne \(a^2\). 2. **Produkt der beiden Terme**: Berechne \(2ab\). 3. **Quadrat des zweiten Terms**: Berechne \(b^2\). 4. **Setze alles zusammen**: Subtrahiere das doppelte Produkt \(2ab\) von \(a^2\) und addiere \(b^2\). Beispiel: Wenn \(a = 3\) und \(b = 2\): 1. \(a^2 = 3^2 = 9\) 2. \(2ab = 2 \cdot 3 \cdot 2 = 12\) 3. \(b^2 = 2^2 = 4\) Setze es in die Formel ein: \((3 - 2)^2 = 9 - 12 + 4 = 1\). Das Ergebnis ist \(1\).
Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]
Die zweite binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((x - 5y)^2\) setzen wir \(a = x\) und \(b = 5y\) ein: \[ (x - 5y)^2 = x^2 - 2 \cdot x \cdot 5y + (5y)^2... [mehr]
Es gibt keine offiziell anerkannte „längste mathematische Formel der Welt“, da mathematische Formeln je nach Kontext und Notation beliebig lang werden können. Allerdings gibt es... [mehr]
Die Schreibweise **bin(n, k)** steht meist für den **Binomialkoeffizienten** und wird auch als „n über k“ gelesen. Er gibt an, auf wie viele Arten man aus einer Menge von **n** v... [mehr]
Die binomischen Formeln sind drei spezielle Rechenregeln zur Ausmultiplizierung von Klammern mit zwei Gliedern (Binomen). Sie lauten: 1. Erste binomische Formel: \[(a + b)^2 = a^2 + 2ab + b^2\] 2.... [mehr]
Der Dreisatz ist eine Rechenmethode, mit der du proportionale Zusammenhänge berechnen kannst. Er wird oft verwendet, um aus drei bekannten Werten einen vierten unbekannten Wert zu bestimmen. **F... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]
Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]
Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]
Um den Ausdruck \((7a - 1)^2\) zu quadrieren, kannst du die Formel für das Quadrat eines Binoms verwenden: \((x - y)^2 = x^2 - 2xy + y^2\). Hier ist \(x = 7a\) und \(y = 1\). Also: \[ (7a - 1... [mehr]