Was macht die Summewenn-Formel?

Antwort

Die Funktion `SUMMEWENN` in Excel summiert die Werte in einem bestimmten Bereich, die einem festten Kriterium entsprechen. Die allgemeine Syntax lautet: ``` SUMMEWENN(Bereich; Kriterium; [Summe_Bereich]) ``` - **ich**: Der Bereich, in dem die Kriterien überprüft werden. - **Kriterium**: Kriterium, das bestimmt, welche Zellen summiert werden sollen (z.B. eine Zahl, ein Text oder ein Ausdruck). - **Summe_Bereich** (optional): Der Bereich, aus dem die Werte summiert werden, wenn sie dem Kriterium entsprechen. Wenn dieser Parameter weggelassen wird, wird der Bereich selbst summiert. Ein Beispiel: Wenn du die Werte in den Zellen A1 bis A10 summieren möchtest, die größer als 10 sind, würdest du die Formel `=SUMMEWENN(A1:A10; ">10")` verwenden.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Binomische Formeln?

Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]

(A^2 + B^2)²?

Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]

(9a + 15b)²?

Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]

(7a-1)²?

Um den Ausdruck \((7a - 1)^2\) zu quadrieren, kannst du die Formel für das Quadrat eines Binoms verwenden: \((x - y)^2 = x^2 - 2xy + y^2\). Hier ist \(x = 7a\) und \(y = 1\). Also: \[ (7a - 1... [mehr]

(A+5)²?

Die Formel für das Quadrat eines Binoms lautet \((a + b)^2 = a^2 + 2ab + b^2\). Für \((A + 5)^2\) ergibt sich: \[ (A + 5)^2 = A^2 + 2 \cdot A \cdot 5 + 5^2 \] Das vereinfacht sich zu: \... [mehr]

Was ist der Satz von Vieta?

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und seinen Wurzeln. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wurzeln \( x_1 \... [mehr]

Löse die Klammern auf: (q+19)(q-19)

Um die Klammern aufzulösen, kannst du die Formel für die Differenz der Quadrate verwenden: \[ (a + b)(a - b) = a^2 - b^2 \] In deinem Fall ist \(a = q\) und \(b = 19\). Das ergibt: \[... [mehr]

Faktorisierung von x²-9y² nach binomischen Formeln

Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]

Wende die zweite Binomische Formel auf (x-5y)² an.

Die zweite binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((x - 5y)^2\) setzen wir \(a = x\) und \(b = 5y\) ein: \[ (x - 5y)^2 = x^2 - 2 \cdot x \cdot 5y + (5y)^2... [mehr]

Multipliziere den Betrag von 3,6 mit der Gegenzahl von 8?

Der Betrag von –3,6 ist 3,6. Die Gegenzahl von 8 ist –8. Jetzt multiplizieren wir die beiden Werte: 3,6 * (–8) = –28,8. Das Ergebnis ist –28,8.