Um den Ausdruck \((6n + 0,5m)^2\) zu vereinfachen, kannst du die binomische Formel \((a + b)^2 = a^2 + 2ab + b^2\) anwenden. Hier ist \(a = 6n\ und \(b = 0,5m\). 1. Berechne \(a^2\): \[ (6n)^2... [mehr]
Der Fundamentalsatz der Algebra besagt, dass jede nicht konstante komplex Polynomfunktion mindestens eine komplexestelle hat. Das bedeutet, dass ein Polynom n-ten Grades (mit n ≥ 1) in den komplexen Zahlen immer genau n Nullstellen hat, wobei diese Nullstellen auch mehrfach gezählt werden. Dieser Satz ist grundlegend für die Algebra und hat weitreichende Konsequenzen in der Mathematik, insbesondere in der Funktionalanalysis und der komplexen Analysis.
Um den Ausdruck \((6n + 0,5m)^2\) zu vereinfachen, kannst du die binomische Formel \((a + b)^2 = a^2 + 2ab + b^2\) anwenden. Hier ist \(a = 6n\ und \(b = 0,5m\). 1. Berechne \(a^2\): \[ (6n)^2... [mehr]
Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]
Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]
Der Ausdruck \((5x - 2y)^2\) kann durch Anwendung der binomischen Formel \((a - b)^2 = a^2 - 2ab + b^2\) vereinfacht werden. Hier ist \(a = 5x\) und \(b = 2y\). Die Berechnung ergibt: \[ (5x - 2y)^2... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Die Gleichung \(3x \cdot x\) kann vereinfacht werden zu \(3x^2\).
Um den Ausdruck \((9ab^2 - 6a^2b):3ab\) durch Faktorisieren zu lösen, gehen wir wie folgt vor: 1. **Faktorisieren des Zählers**: Der Ausdruck \(9ab^2 - 6a^2b\) kann faktorisieren werden... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]