10 Prozent von 8,83 sind 0,883.
Eine Definitionsmenge ist der Bereich von Werten, für die eine Funktion oder mathematische Aussage definiert ist. Sie umfasst alle möglichen Eingabewerte (x-Werte), die in die Funktion eingesetzt werden können, ohne dass die Funktion undefiniert wird. Bei einer Funktion f(x) ist die Definitionsmenge oft in Form von Intervallen oder durch bestimmte Bedingungen angegeben. Beispielsweise ist die Definitionsmenge der Funktion f(x) = √x alle nicht-negativen reellen Zahlen, da der Ausdruck unter der Wurzel nicht negativ sein darf.
10 Prozent von 8,83 sind 0,883.
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Das Winkeldritteln mit Zirkel und Lineal ist im Allgemeinen **nicht** mit endlich vielen Schritten möglich. Das ist ein klassisches Problem der antiken Geometrie, das 1837 von Pierre Wantzel bewi... [mehr]
Drei plus vier ergibt sieben.
Eine Differentialgleichung ist eine mathematische Gleichung, in der eine unbekannte Funktion und ihre Ableitungen vorkommen. Sie beschreibt, wie sich eine Größe (z. B. Temperatur, Geschwind... [mehr]
Zuerst wird der Ausdruck mit Klammern berechnet: 28 – (15 + 9) = 28 – 24 = 4Wenn du die Klammern weässt, bleibt der Ausdruck so stehen: 28 – 15 + 9 Nun rechnest du das oh... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Deine Frage ist unklar. Bitte stelle eine klare und präzise Frage.
Der Rechenausdruck lautet: (128 − 99) − (96 − 77) Berechnung: (128 − 99) = 29 (96 − 77) = 19 29 − 19 = 10 Das Ergebnis ist 10.
Eine spannende Idee für das Thema „Einführung in Funktionen“ ist, das Konzept anhand einer Alltagssituation zu erklären, zum Beispiel mit einem „Getränkeautomaten... [mehr]