Um die Formel \( V = \frac{1}{3} a^2 \cdot h \) nach \( h \) umzustellen, folge diesen Schritten: 1. Multipliziere beide Seiten der Gleichung mit 3, um den Bruch zu eliminieren: \[ 3V = a^2 \cd... [mehr]
Das Volumen eines Dreiecksprismas kann mit der folgenden Formel berechnet werden: \[ V = B \cdot h \] Dabei ist: - \( V \) das Volumen des Prismas, - \( B \) die Grundfläche des dreieckigen Querschnitts, - \( h \) die Höhe des Prismas (die Länge zwischen den beiden dreieckigen Grundflächen). Die Grundfläche \( B \) eines Dreiecks kann mit der Formel: \[ B = \frac{1}{2} \cdot a \cdot b \cdot \sin(\gamma) \] oder, wenn die Höhe des Dreiecks bekannt ist: \[ B = \frac{1}{2} \cdot a \cdot h_{\text{Dreieck}} \] berechnet werden, wobei: - \( a \) und \( b \) die Längen zweier Seiten des Dreiecks sind, - \( \gamma \) der eingeschlossene Winkel zwischen diesen Seiten ist, - \( h_{\text{Dreieck}} \) die Höhe des Dreiecks ist, die auf die Seite \( a \) fällt. Setzt man die Grundfläche \( B \) in die Volumenformel ein, erhält man das Volumen des Dreiecksprismas.
Um die Formel \( V = \frac{1}{3} a^2 \cdot h \) nach \( h \) umzustellen, folge diesen Schritten: 1. Multipliziere beide Seiten der Gleichung mit 3, um den Bruch zu eliminieren: \[ 3V = a^2 \cd... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]
Es gibt keine offiziell anerkannte „längste mathematische Formel der Welt“, da mathematische Formeln je nach Kontext und Notation beliebig lang werden können. Allerdings gibt es... [mehr]
Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]
Die Schreibweise **bin(n, k)** steht meist für den **Binomialkoeffizienten** und wird auch als „n über k“ gelesen. Er gibt an, auf wie viele Arten man aus einer Menge von **n** v... [mehr]
Die binomischen Formeln sind drei spezielle Rechenregeln zur Ausmultiplizierung von Klammern mit zwei Gliedern (Binomen). Sie lauten: 1. Erste binomische Formel: \[(a + b)^2 = a^2 + 2ab + b^2\] 2.... [mehr]
Der Dreisatz ist eine Rechenmethode, mit der du proportionale Zusammenhänge berechnen kannst. Er wird oft verwendet, um aus drei bekannten Werten einen vierten unbekannten Wert zu bestimmen. **F... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]