Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]
Die gegebene Funktionsgleichung \( y = 2x^2 \) beschreibt eine Parabel, die sich von der Normalparabel \( y = x^2 \) unterscheidet. Der Hauptunterschied liegt in der Streckung der Parabel. 1. **Streckung**: Die Normalparabel hat den Koeffizienten 1 vor \( x^2 \), während die gegebene Parabel den Koeffizienten 2 hat. Dies bedeutet, dass die Parabel \( y = 2x^2 \) steiler ist als die Normalparabel. Für jeden Wert von \( x \) ist der Funktionswert \( y \) doppelt so groß wie bei der Normalparabel. 2. **Scheitelpunkt**: Der Scheitelpunkt der Parabel \( y = 2x^2 \) liegt bei \( (0, 0) \). Dies ist der tiefste Punkt der Parabel, da sie nach oben geöffnet ist. Zusammenfassend ist die Parabel \( y = 2x^2 \) eine steilere Version der Normalparabel \( y = x^2 \) mit dem Scheitelpunkt bei \( (0, 0) \).
Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Um den Funktionsterm einer Parabel anhand ihres Graphen zu erkennen, kannst du folgende Schritte befolgen: 1. **Scheitelpunkt bestimmen**: Finde den Scheitelpunkt der Parabel. Dieser Punkt ist entwed... [mehr]
Der Graph der Stammfunktion einer nach oben hin geöffneten Parabel hat die Form einer kubischen Funktion. Eine nach oben hin geöffnete Parabel kann allgemein durch die Funktion \( f(x) = ax^... [mehr]