Schnittstellen mit den Koordinatenachsen von f(x)=1,5x-1,5 berechnen.

Antwort

Um die Schnittstellen der Funktion \( f(x) = 1,5x - 1,5 \) mit den Koordinatenachsen zu berechnen, gehen wir wie folgt vor: 1. **Schnittstelle mit der y-Achse**: Diese Schnittstelle findet man, indem man \( x = 0 \) setzt. \[ f(0) = 1,5 \cdot 0 - 1,5 = -1,5 \] Die Schnittstelle mit der y-Achse ist also der Punkt \( (0, -1,5) \). 2. **Schnittstelle mit der x-Achse**: Diese Schnittstelle findet man, indem man \( f(x) = 0 \) setzt. \[ 0 = 1,5x - 1,5 \] Um \( x \) zu isolieren, addiere \( 1,5 \) zu beiden Seiten: \[ 1,5x = 1,5 \] Teile nun durch \( 1,5 \): \[ x = 1 \] Die Schnittstelle mit der x-Achse ist also der Punkt \( (1, 0) \). Zusammenfassend sind die Schnittstellen mit den Koordinatenachsen: - y-Achse: \( (0, -1,5) \) - x-Achse: \( (1, 0) \)

KI fragen

Verwandte Fragen

Wie kann ich eine Funktion in der Mitte einer anderen Gleichung verwenden?

Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]

Wie lautet die Ableitung von f(x) = ((x-3)(x+2))/((x+1)(x+5))?

Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]

Wie lautet eine Beispielaufgabe zu Schnittstellen von Polynomfunktionen, die mit der Substitutionsmethode gelöst wird, inklusive Lösung?

**Aufgabenstellung:** Gegeben sind die beiden Polynomfunktionen \( f(x) = x^3 - 2x^2 + x \) und \( g(x) = x^2 - x + 2 \). Berechne die Schnittpunkte der beiden Funktionen mithilfe der Substitu... [mehr]

Wie sieht eine Aufgabe zu Schnittstellen von Polynomfunktionen in Klasse 11 mit Lösung aus?

**Beispielaufgabe:** Gegeben sind die beiden Funktionen \( f(x) = x^3 - 2x^2 + x \) und \( g(x) = -x^2 + 3x \). **Aufgabe:** Bestimme alle Schnittpunkte der beiden Funktionsgraphen. --- **... [mehr]

Was ist eine Integralfunktion?

Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]

Welcher Wortschatz ist typisch bei der Laplace-Transformation?

Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]

Was ist die Produktregel einfach erklärt?

Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]

Welche Funktion hat ein Maximum bei (332.0822, 0.83269) und ein Minimum bei (332.2387, -0.82764) und konvergiert für x gegen unendlich gegen die x-Achse?

Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]

Welche Funktion besitzt sowohl ein Minimum als auch ein Maximum und hat auf beiden Seiten eine Asymptote zur x-Achse?

Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]

Was ist eine ganzrationale Funktion?

Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]