Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Um die Schnittpunkte der Parabel \( y = x^2 - 12x + 32 \) mit den Koordinatenachsen zu berechnen, gehen wir wie folgt vor: 1. **Schnittpunkt mit der y-Achse**: Dieser Punkt tritt auf, wenn \( x = 0 \). \[ y = 0^2 - 12 \cdot 0 + 32 = 32 \] Der Schnittpunkt mit der y-Achse ist also \( (0, 32) \). 2. **Schnittpunkte mit der x-Achse**: Diese Punkte treten auf, wenn \( y = 0 \). Wir setzen die Gleichung gleich null und lösen die quadratische Gleichung: \[ 0 = x^2 - 12x + 32 \] Um die Nullstellen zu finden, verwenden wir die Mitternachtsformel: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Hier ist \( a = 1 \), \( b = -12 \), und \( c = 32 \): \[ x = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 1 \cdot 32}}{2 \cdot 1} \] \[ x = \frac{12 \pm \sqrt{144 - 128}}{2} \] \[ x = \frac{12 \pm \sqrt{16}}{2} \] \[ x = \frac{12 \pm 4}{2} \] Dies ergibt zwei Lösungen: \[ x_1 = \frac{16}{2} = 8 \quad \text{und} \quad x_2 = \frac{8}{2} = 4 \] Die Schnittpunkte mit der x-Achse sind also \( (8, 0) \) und \( (4, 0) \). Zusammenfassend sind die Schnittpunkte der Parabel mit den Koordinatenachsen: - Mit der y-Achse: \( (0, 32) \) - Mit der x-Achse: \( (8, 0) \) und \( (4, 0) \)
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Um den Funktionsterm einer Parabel anhand ihres Graphen zu erkennen, kannst du folgende Schritte befolgen: 1. **Scheitelpunkt bestimmen**: Finde den Scheitelpunkt der Parabel. Dieser Punkt ist entwed... [mehr]
Der Graph der Stammfunktion einer nach oben hin geöffneten Parabel hat die Form einer kubischen Funktion. Eine nach oben hin geöffnete Parabel kann allgemein durch die Funktion \( f(x) = ax^... [mehr]
Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]
Um die Schnittpunkte der linearen Funktion \( y = -\frac{1}{2}x - 5.25 \) zu bestimmen, benötigst du eine zweite Funktion, mit der du die Schnittpunkte berechnen kannst. Wenn du beispielsweise di... [mehr]
Um die Schnittpunkte der linearen Funktion \( y = -\frac{1}{2}x - 5.25 \) zu bestimmen, müssen wir die Schnittpunkte mit den Achsen finden. 1. **Schnittpunkt mit der y-Achse**: Dieser Punkt trit... [mehr]