Um den Ausdruck \( 1a : (2^{-1/2} \cdot a + 1^{-1/2}) \) nach \( a \) aufzulösen, muss zunächst klar sein, was genau gemeint ist. Ich gehe davon aus, dass du die Gleichung \[ \frac{a}{2^{-1... [mehr]
Um die quadratische Gleichung \(x^2 - 8x + 16 = 0\) zu lösen, kann die Mitternachtsformel (auch bekannt als die quadratische Lösungsformel) verwendet werden. Die allgemeine Form einer quadratischen Gleichung ist \(ax^2 + bx + c = 0\), wobei \(a\), \(b\) und \(c\) Konstanten sind. In diesem Fall ist \(a = 1\), \(b = -8\) und \(c = 16\). Die Mitternachtsformel lautet: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Setze die Werte für \(a\), \(b\) und \(c\) in die Formel ein: \[ x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \cdot 1 \cdot 16}}{2 \cdot 1} \] \[ x = \frac{8 \pm \sqrt{64 - 64}}{2} \] \[ x = \frac{8 \pm \sqrt{0}}{2} \] \[ x = \frac{8 \pm 0}{2} \] \[ x = \frac{8}{2} \] \[ x = 4 \] Die Lösung der quadratischen Gleichung \(x^2 - 8x + 16 = 0\) ist also: \[ x = 4 \] Da die Diskriminante (\(b^2 - 4ac\)) gleich null ist, gibt es nur eine Lösung, und diese Lösung ist eine doppelte Wurzel.
Um den Ausdruck \( 1a : (2^{-1/2} \cdot a + 1^{-1/2}) \) nach \( a \) aufzulösen, muss zunächst klar sein, was genau gemeint ist. Ich gehe davon aus, dass du die Gleichung \[ \frac{a}{2^{-1... [mehr]
Um die Gleichung \(14x + (15x - 23) = (19 + 25x) + (34x + 18)\) zu lösen, folge diesen Schritten: 1. Vereinfache beide Seiten der Gleichung. Linke Seite: \[ 14x + 15x - 23 = 29x - 23 \] Rechte... [mehr]
Die Diskriminante \( D \) einer quadratischen Gleichung der Form \( ax^2 + bx + c = 0 \) wird mit der Formel \( D = b^2 - 4ac \) berechnet. Die Diskriminante gibt Auskunft über die Anzahl und A... [mehr]
Die Diskriminante einer quadratischen Gleichung der Form \(x^2 + ax + b = 0\) wird mit der Formel \(D = a^2 - 4b\) berechnet. Hierbei ist \(D\) die Diskriminante, \(a\) der Koeffizient von \(x\) und \... [mehr]
Äquivalenzumformungen sind Umformungen von Gleichungen oder Ungleichungen, bei denen die Lösungsmenge erhalten bleibt. Das Ziel ist, die Gleichung so umzuformen, dass sie leichter zu lö... [mehr]
Die Gleichung lautet: \( 3x + 7 - 5x - 1 = 0 \) **1. Äquivalenzumformungen:** Zuerst gleichartige Terme zusammenfassen: \( 3x - 5x + 7 - 1 = 0 \) \( -2x + 6 = 0 \) Nun die Gleichung nach... [mehr]
Eine Äquivalenzumformung ist eine Umformung einer mathematischen Gleichung oder Aussage, bei der die Lösungsmenge unverändert bleibt. Das bedeutet, dass die ursprüngliche Gleichung... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Die binomischen Formeln sind wichtige algebraische Identitäten, die das Quadrat und das Produkt von zwei Binomen beschreiben. Es gibt drei grundlegende binomische Formeln: 1. **Erste binomische... [mehr]